Sigmoid函数及其导数公式
f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+e−x1
其导数为:
f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) f^{\prime}(x)=f(x)(1-f(x)) f′(x)=f(x)(1−f(x))
Sigmoid函数求导详细推导过程
f ( x ) = 1 1 + e − x = ( 1 + e − x ) − 1 f(x)=\frac{1}{1+e^{-x}}=\left(1+e^{-x}\right)^{-1} f(x)=1+e−x1=(1+e−x)−1
f ′ ( x ) = ( − 1 ) ( 1 + e − x ) − 2 e − x ( − 1 ) = ( 1 + e − x ) − 2 e − x = e − x ( 1 + e − x ) 2 = 1 + e − x − 1 ( 1 + e − x ) 2 = 1 + e − x ( 1 + e − x ) 2 − 1 ( 1 + e − x ) 2 = 1 1 + e − x − 1 ( 1 + e − x ) 2 = ( 1 1 + e − x ) ( 1 − 1 1 + e − x ) = f ( x ) ( 1 − f ( x ) ) \begin{aligned} f'(x) &=(-1) \left(1+e^{-x}\right)^{-2} e^{-x} (-1) \\\\ &=\left(1+e^{-x}\right)^{-2} e^{-x} \\\\ &=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}} \\\\ &=\frac{1+e^{-x}-1}{\left(1+e^{-x}\right)^{2}} \\\\ &=\frac{1+e^{-x}}{\left(1+e^{-x}\right)^{2}}-\frac{1}{\left(1+e^{-x}\right)^{2}} \\\\ &=\frac{1}{1+e^{-x}}-\frac{1}{\left(1+e^{-x}\right)^{2}} \\\\ &=\left(\frac{1}{1+e^{-x}}\right)\left(1-\frac{1}{1+e^{-x}}\right) \\\\ &=f(x)(1-f(x)) \end{aligned} f′(x)=(−1)(1+e−x)−2e−x(−1)=(1+e−x)−2e−x=(1+e−x)2e−x=(1+e−x)21+e−x−1=(1+e−x)21+e−x−(1+e−x)21=1+e−x1−(1+e−x)21=(1+e−x1)(1−1+e−x1)=f(x)(1−f(x))
参考资料
考研必备数学公式大全: https://blog.csdn.net/zhaohongfei_358/article/details/106039576