Amazon.com Recommendations Item-to-Item Collaborative Filtering
个人感受:
这篇论文首先介绍了历史上的三种算法:传统协同过滤、聚类、基于搜索的算法。第一种方法在计算效率、少量数据上表现欠佳;第二种方法准确率欠佳;第三种方法比较“简单”,因此提出了大量计算在线下的物品-物品的相似记录进行推荐。
揣测一下作者的思路,计算量大是因为数据量大,但是其中有价值的就是其中购买的物品,而且对于购买的物品来说,我们推荐的也是根据购买的物品来推荐的,用户仅仅是提供了物品之间的关系,也就是说物品-用户记录-物品这样的逻辑联系起来的,用户提供了物品的关联信息,最终的目标还是推荐物品,因此作者从计算量的角度来说把大量计算放在线下,而且根据我的关注点——商品来提出了这种算法。
除此之外,大量的测试数据也是作者的宝贵财富,因为实验室可能根本就没有这样大量的真实数据进行测试。
推荐系统使用用户的购买信息来为用户推荐可能感兴趣的信息,当然,除了已有的信息之外,还可以使用用户的感兴趣或者地理或者其他特征信息,这些都是我们可以利用的信息。