画矩形 (排列组合)

该问题涉及将矩形画作通过翻转和旋转进行区分,计算在给定的n行和m列中,选择2k个行和2k个列能形成的不同排列总数。利用组合数公式,计算(n-1choose2k)*(m-1choose2k),并取模得到答案。
摘要由CSDN通过智能技术生成

 

 这里需要注意,虽然在上述 5 种画作中,第 1,2 种画作之间可以经过翻转或旋转相互转化(第 3,4

种画作之间也可以经过翻转或旋转相互转化),但仍视为不同画作。

输入格式

共一行,包含三个整数 n,m,k。

输出格式

一个整数,表示可能绘制出的不同画作的总数量对 1e9+7取模后的结果。

数据范围

前 3 个测试点满足 1≤n,m≤6。
所有测试点满足 1≤n,m,k≤1000。

输入样例1:
3 3 1
输出样例1:
1
输入样例2:
4 4 1
输出样例2:
9
输入样例3:
5 6 2
输出样例3:
5

        k个矩形的话行方向上有2k条边,列方向上有2k条边,所以本题可以转为求行方向上的全排列和列方向的全排列。

        可用的行为n-1、列为m-1,即从n-1里随机选2k条,从m-1里随机选2k条:

        _{n-1}^{2*k}\textrm{C} * _{m-1}^{2*k}\textrm{C}

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1010,mod = 1e9+7;
int n,m,k,c[N][N];
int main()
{
    for(int i=0;i<N;i++)
    {
        for(int j=0;j<=i;j++)
        {
            if(!j) c[i][j] = 1;
            else
                c[i][j] = (c[i-1][j] + c[i-1][j-1])%mod;
        }
    }
    scanf("%d%d%d",&n,&m,&k);
    if(2*k>n-1||2*k>m-1)
        cout<<0;
    else
        cout<<(LL)c[n-1][2*k]*c[m-1][2*k]%mod;
    return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值