这里需要注意,虽然在上述 5 种画作中,第 1,2 种画作之间可以经过翻转或旋转相互转化(第 3,4
种画作之间也可以经过翻转或旋转相互转化),但仍视为不同画作。
输入格式
共一行,包含三个整数 n,m,k。
输出格式
一个整数,表示可能绘制出的不同画作的总数量对 1e9+7取模后的结果。
数据范围
前 3 个测试点满足 1≤n,m≤6。
所有测试点满足 1≤n,m,k≤1000。
输入样例1:
3 3 1
输出样例1:
1
输入样例2:
4 4 1
输出样例2:
9
输入样例3:
5 6 2
输出样例3:
5
k个矩形的话行方向上有2k条边,列方向上有2k条边,所以本题可以转为求行方向上的全排列和列方向的全排列。
可用的行为n-1、列为m-1,即从n-1里随机选2k条,从m-1里随机选2k条:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1010,mod = 1e9+7;
int n,m,k,c[N][N];
int main()
{
for(int i=0;i<N;i++)
{
for(int j=0;j<=i;j++)
{
if(!j) c[i][j] = 1;
else
c[i][j] = (c[i-1][j] + c[i-1][j-1])%mod;
}
}
scanf("%d%d%d",&n,&m,&k);
if(2*k>n-1||2*k>m-1)
cout<<0;
else
cout<<(LL)c[n-1][2*k]*c[m-1][2*k]%mod;
return 0;
}