推荐引擎(一)

推荐引擎算法大体上分为两种:
(一)基于内容的
暂时不分析
(二)协同过滤
一个协同过滤算法通常的做法是对一大群人进行搜索,从中找到与我们品味相近的一小群人,算法会对这些人所偏爱的其他内容进行考查,并把他们组合成一个经过排名的推荐列表。
1,首先我们先找与我们品味相同的用户
我们常用的两套计算相似度评价值得体系:[b]欧几里德距离[/b]和[b]皮尔逊相关度[/b]
例子:
# set of movies
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}

[b]欧几里德距离[/b]

from math import sqrt

# Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs,person1,person2):
# Get the list of shared_items
si={}
for item in prefs[person1]:
if item in prefs[person2]: si[item]=1

# if they have no ratings in common, return 0
if len(si)==0: return 0

# Add up the squares of all the differences
sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
for item in prefs[person1] if item in prefs[person2]])

return 1/(1+sum_of_squares)


运行:
>>> import myset
>>> myset.sim_distance(myset.critics,'Lisa Rose','Gene Seymour')
0.14814814814814814
上述执行过程给出了Lisa Rose和Gene Seymour之间的相似度评价
[b]皮尔逊相关度[/b]
如果某人总是倾向于给出比另一个人更高的分值,而二者的分值之差又始终保持一致,则他们依然可能会存在很好的相关性,前面的欧几里德距离就显得不合适了。我们看下皮尔逊相关度评价。
def sim_pearson(prefs,p1,p2):
# Get the list of mutually rated items
si={}
for item in prefs[p1]:
if item in prefs[p2]: si[item]=1

# if they are no ratings in common, return 0
if len(si)==0: return 0

# Sum calculations
n=len(si)

# Sums of all the preferences
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])

# Sums of the squares
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])

# Sum of the products
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])

# Calculate r (Pearson score)
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0: return 0

r=num/den

return r


发现一篇介绍推荐引擎的文章写得很不错
http://www.oschina.net/question/12_17362
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值