一
一个有序数组A, 另一个无序数组B,请打印B中的所有不在A中的数, A数组长度为N,B数组长度为M。
算法流程1:对于数组B中的每一个数,都在A中通过遍历的方式找一下;
算法流程2:对于数组B中的每一个数,都在A中通过二分的方式找一下;
算法流程3:先把数组B排序,然后用类似外排的方式打印所有在A中出现的数;
1、O(M*N)
2、O(M*logN)
3、O(M*logM)+O(M+N)
二
对数器的概念和使用(用这种思想来自我验证)
0, 有一个你想要测的方法a,
1, 实现一个绝对正确但是复杂度不好的方法b,
2, 实现一个随机样本产生器
3, 实现比对的方法
4, 把方法a和方法b比对很多次来验证方法a是否正确。
5, 如果有一个样本使得比对出错, 打印样本分析是哪个方法出错
6, 当样本数量很多时比对测试依然正确, 可以确定方法a已经正确
实现见下方代码
三
冒泡排序与复杂度分析
每次都能找出一个最大或最小到最后一位
时间复杂度O(N^2), 额外空间复杂度O(1)
import java.util.Arrays;
public class BubbleSort{
public static void bubbleSort(int arr[]){
if (arr == null || arr.length < 2){
//特殊情况
return;
}
for (int e = arr.length - 1; e > 0; e--){
for (int i = 0; i < e; i++){
if (arr[i] > arr[i + 1]){
swap2(arr, i, i+1);
}
}
}
}
public static void swap1(int arr[], int i, int j){
//1.借助临时变量
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
public static void swap2(int arr[], int i, int j){
//2.1 异或法 2.2加减法 2.3乘除法
arr[i] = arr[i] ^ arr[j];
arr[j] = arr[i] ^ arr[j];
arr[i] = arr[i] ^ arr[j];
}
//for test:
public static void comparator(int arr[]){
Arrays.sort(arr);
}
public static int[] generateRandomArray(int maxSize, int maxValue){
int arr[] = new int[(int) ((maxSize + 1) * Math.random())];
for (int i = 0; i < arr.length; i++){
arr[i] = (int)((maxValue + 1) * Math.random()) - (int)((maxValue + 1) * Math.random());
}
return arr;
}
public static int[] copyArray(int arr[]){
if(arr == null){
return null;
}
int res[] = new int[arr.length];
for(int i = 0; i < arr.length; i++){
res[i] = arr[i];
}
return res;
}
public static boolean isEqual(int arr1[], int arr2[]){
if((arr1 == null && arr2 != null) || (arr2 == null && arr1 != null)){
return false;
}
if(arr1.length != arr2.length){
return false;
}
if(arr1 == null && arr2 == null){
return true;
}
for(int i = 0; i < arr1.length; i++){
if(arr1[i] != arr2[i]){
return false;
}
}
return true;
}
public static void printArray(int arr[]){
if(arr == null){
return;
}
for(int x: arr){
System.out.print(x + " ");
}
System.out.println();
}
public static void main(String args[]){
int testTime = 50000;
int maxSize = 100;
int maxValue = 100;
boolean succeed = true;
for(int i = 0; i < testTime; i++){
int arr1[] = generateRandomArray(maxSize, maxValue);
int arr2[] = copyArray(arr1);
bubbleSort(arr1);
comparator(arr2);
if(!isEqual(arr1, arr2)){
succeed = false;
break;
}
}
System.out.println(succeed? "Nice!" : "Fucking fucked!");
int arr[] = generateRandomArray(maxSize, maxValue);
printArray(arr);
bubbleSort(arr);
printArray(arr);
}
}
四
选择排序与复杂度分析
时间复杂度O(N^2), 额外空间复杂度O(1)
import java.util.Arrays;
public class SelectionSort{
public static void selectionSort(int arr[]){
if (arr == null || arr.length < 2){
return;
}
for (int i = 0; i < arr.length - 1; i++){
minIndex = i;
for (int j = i + 1; j < arr.length; j++){
minIndex = arr[j] < arr[minIndex] ? j : minIndex;
}
swap(arr, i, minIndex);
}
}
public static void swap(int arr[], int i, int j){
arr[i] = arr[i] + arr[j];
arr[j] = arr[i] - arr[j];
arr[i] = arr[i] - arr[j];
}
}
五
插入排序与复杂度分析
分成两段,一段是排好的,一段是未排的(类似摸牌),有点像反向冒泡;
时间复杂度O(N^2), 额外空间复杂度O(1).
import java.util.Arrays;
public class InsertionSort{
public static void insertionSort(int arr[]){
if (arr == null || arr.length < 2){
return 0;
}
for (int i = 1; i < arr.length; i++){
for(int j = i - 1; j >= 0 && arr[j] > arr[j+1]; j--){
swap(arr, j, j + 1);
}
}
}
public static void swap(int arr[], int i, int j){
if (arr == null || i > arr.length - 1 || j > arr.length - 1){
return;
}
arr[i] = arr[i] * arr[j];
arr[j] = arr[i] / arr[j];
arr[i] = arr[i] / arr[j];
}
}
六
剖析递归行为和递归行为时间复杂度的估算
一个递归行为的例子
master公式的使用(适用范围:子过程规模一样)
T(N) = a*T(N/b) + O(N^d)
- log(b,a) > d -> 复杂度为O(N^log(b,a))
- log(b,a) = d -> 复杂度为O(N^d * logN)
- log(b,a) < d -> 复杂度为O(N^d)
补充阅读: www.gocalf.com/blog/algorithm-complexity-and-mastertheorem.html
先例:用递归求一个数组的最大值 T(N) = 2T(N/2) + O(1)
public class Demo{
public static int getMax(int[] arr, int L, int R){
if(L == R){
return arr[L];
}
int mid = (L + R) / 2;
int leftMax = getMax(arr, L, mid);
int rightMax = getMax(arr, mid+1, R);
return Math.max(leftMax, rightMax);
}
public static void main(String[] args){
int[] arr = new int[]{4,3,2,1};
System.out.println(getMax(arr, 0, arr.length-1));
}
}
七
归并排序的细节讲解与复杂度分析(递归)
(1)左侧和右侧分别排好序;
(2)用外排的方式同一排好。
跨组比较,每一次都利用了之前排过的序,不像冒泡和选择等重复比较
T(N) = 2T(n/2) + O(N)
时间复杂度O(N*logN), 额外空间复杂度O(N)
public class MergeSort{
public static void mergeSort(int[] arr){
if(arr == null || arr.length < 2){
return;
}
mergeSort(arr, 0, arr.length-1);
}
public static void mergeSort(int[] arr, int l, int r){
if(l == r){
return;
}
int mid = (l + r) / 2;
// int mid = l + (r - l) / 2; //防止溢出
// int mid = l + (r - 1) >> 1; //等价于右移一位
mergeSort(arr, l, mid);
mergeSort(arr, mid+1, r);
merge(arr, l, mid, r);
}
public static void merge(int[] arr, int l, int m, int r){
int[] help = new int[r - l + 1];
int i = 0;
int p1 = l;
int p2 = m + 1;
while(p1 <= m && p2 <= r){
help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
}
while(p1 <= m){
help[i++] = arr[p1++];
}
while(p2 <= r){
help[i++] = arr[p2++];
}
for (int j = 0; j < help.length; j++){
arr[l + j] = help[j];
}
}
}
八
小和问题和逆序对问题
小和问题
在一个数组中, 每一个数左边比当前数小的数累加起来, 叫做这个数组的小和。 求一个数组的小和。
例子:
[1,3,4,2,5]
1左边比1小的数, 没有;
3左边比3小的数, 1;
4左边比4小的数, 1、 3;
2左边比2小的数, 1;
5左边比5小的数, 1、 3、 4、 2;
所以小和为1+1+3+1+1+3+4+2=16
【思路】
1、暴力方法:每个数遍历左边,O(N^2)
2、归并排序方法
等价于当前数右边比这个数大的个数逆序对问题
在一个数组中, 左边的数如果比右边的数大, 则折两个数构成一个逆序对, 请打印所有逆序
对。
public class SmallSum{
public static int smallSum(int[] arr){
if(arr == null || arr.length < 2){
return 0;
}
return mergeSort(arr, 0, arr.length-1);
}
public static int mergeSort(int[] arr, int l, int r){
if(l == r){
return 0;
}
int mid = l + (r - l) / 2;
return mergeSort(arr, l, mid) + mergeSort(arr, mid+1, r) + merge(arr, l, mid, r);
}
public static int merge(int[] arr, int l, int m, int r){
int[] help = new int[r - l +1];
int i = 0;
int p1 = l;
int p2 = m+1;
int res = 0;
while(p1 <= m && p2 <= r){
res += arr[p1] < arr[p2] ? (r - p2 + 1) * arr[p1]:0;
help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
}
while(p1 <= m){
help[i++] = arr[p1++];
}
while(p2 <= r){
help[i++] = arr[p2++];
}
for(i=0; i < help.length; i++){
arr[l + i] = help[i];
}
return res;
}
}