牛客网算法笔记(基础班第二课)

本文深入讲解了各种排序算法,包括快速排序、堆排序、荷兰国旗问题的解决方案,以及它们的时间和空间复杂度分析。同时,文章探讨了排序算法的稳定性,并介绍了非基于比较的排序如桶排序的概念,最后给出了工程实践中综合排序算法的选择策略。
1

问题一 -> 分两层

给定一个数组arr, 和一个数num, 请把小于等于num的数放在数组的左边, 大于num的数放在数组的右边。

要求额外空间复杂度O(1), 时间复杂度O(N)

​ 令0~x为小于等于num区(初始看作-1之前的区域),遍历不断扩充这个区,类似选择排序

问题二(荷兰国旗问题) -> 分三层

给定一个数组arr, 和一个数num, 请把小于num的数放在数组的左边, 等于num的数放在数组的中间, 大于num的数放在数组的右边。

要求额外空间复杂度O(1), 时间复杂度O(N)

​ 从两边向中间挤(-1之前为小,length之后为大且为待定区域),大的指标与遍历指标相遇时停止

public class NetherlandsFlag {
    public static int[] partition(int[] arr, int L, int R, int num) {
        int less = L - 1;
        int more = R + 1;
        while(L < more){
            if(arr[L] < num){
                swap(arr, ++less, L++);
            }
            else if(arr[L] > num){
                swap(arr, --more, L);
                // 此处易错点:从后面往前面换,当前位置要再次判断
            }
            else{
                L++;
            }
        }
        // 返回相等区域的下标
        return new int[] {less + 1, more -1};
    }
    public static void swap(int[] arr, int i, int j){
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
        //1 4 8 5 7 9 正确

//        arr[i] = arr[i] ^ arr[j];
//        arr[j] = arr[i] ^ arr[j];
//        arr[i] = arr[i] ^ arr[j];
        //1 4 0 5 7 9 错误
//        arr[i] = arr[i] + arr[j];
//        arr[j] = arr[i] - arr[j];
//        arr[i] = arr[i] - arr[j];
        //1 4 0 5 7 9 错误
//        arr[i] = arr[i] * arr[j];
//        arr[j] = arr[i] / arr[j];
//        arr[i] = arr[i] / arr[j];
        //1 4 1 5 7 9 错误
    }
    
    //for test
    public static void printArray(int[] arr){
        if(arr == null){
            return;
        }
        for(int x:arr){
            System.out.print(x + " ");
        }
    }
    public static void main(String[] args){
        int[] arr = new int[]{9,1,5,8,4,7};
        int[] cur = partition(arr, 0, arr.length - 1, 4);
        printArray(arr);
    }
}
2

随机快速排序的细节和复杂度分析
可以用荷兰国旗问题来改进快速排序
时间复杂度O(N*logN), 额外空间复杂度O(logN) (用于随机快排记录划分点)

​ 经典快排每次搞定一个数即最后一个数放到正确的位置,问题:与数据状况有关系,如果是排好的容易出现O(N^2)

随机快排工程上最常用,但不能用递归)(从中间堆积选一个书换到最后一位)的复杂度O(N*logN)是一个长期期望的复杂度(如何改写为非递归版本??

技巧:用随机数或hash打乱原始数据状况

public class QuickSort{
    public static void quickSort(int[] arr, int L, int R){
		if(L < R){
            //加上下面一行变为随机快排
            swap(arr, L + (int)(Math.random()*(R-L+1)), R);
            int[] p = partition(arr, L, R);
            quickSort(arr, L, p[0] - 1);
            quickSort(arr, p[1] + 1, R);
        }
    }
    public static int[] partition(int[] arr, int L, int R){
        int less = L - 1;
        int more = R; //不用再管R位置已排好的这个数
        while(L < more){
            if(arr[L] < arr[R]){
                swap(arr, ++less, L++);
            }
            else if(arr[L] > arr[R]){
                swap(arr, --more, L);
            }
            else{
                L++;
            }
        }
        swap(arr, more, R); //将这个数换到正确位置
        return new int[]{less + 1, more - 1};
    }
    public static void swap(int[] arr, int i, int j){
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
}
3

堆排序的细节和复杂度分析
时间复杂度O(N*logN), 额外空间复杂度O(1)
堆结构非常重要(堆:完全二叉树(满二叉树或从左到有依次补齐的树)
1, 堆结构的heapInsert与heapify
2, 堆结构的增大和减少
3, 如果只是建立堆的过程, 时间复杂度为O(N)=log1+log2+…+logN-1

数组实现完全二叉树(脑补):i节点的父节点**(i-1)/2**,左孩子**(2i + 1),右孩子(2i + 2)**

​ 大根堆:任何一个子树的最大值是其头部,小根堆同理

将完全二叉树变为大根堆(heapInsert):遍历数组,与父节点比较,大就换,直到没有父节点比我大

改变堆中值,更新堆(heapify):从改变位置与较大孩子节点交换,小就换,直到没有孩子节点比我大

将大根堆排序:每次将堆顶与当前堆尾交换,堆大小减1(排好一位),更新堆,直到堆消失

4, 优先级队列结构, 就是堆结构

public class HeapSort{
    public static void heapSort(int[] arr){
        if(arr == null || arr.length < 2){
            return;
        }
        for(int i = 0; i < arr.length; i++){
            heapInsert(arr, i);
        }
        int size = arr.length;
        swap(arr, 0, --size);
        while(size > 0){
            heapify(arr, 0, size);
            swap(arr, 0, --size);
        }
        
    }
    public static void heapInsert(int[] arr,int index){
        while(arr[index] > arr[(index - 1) / 2]){
            swap(arr, index, (index - 1) / 2);
            index = (index - 1) / 2;
        }
    }
    public static void swap(int[] arr, int i, int j){
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
    public static void heapify(int[] arr, int index, int heapSize){
        int left = index * 2 + 1;
        while(left < heapSize){
            int largeIndex = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left; //此处易错,要将left+1的判断合在一起,所以要写前面
            largeIndex = arr[index] > arr[largeIndex] ? index : largeIndex;
            if(largeIndex == index){
                break;
            }
            swap(arr, index, largeIndex);
            index = largeIndex;
            left = index * 2 + 1;
        }
    }
}
4

排序算法的稳定性及其汇总

​ 稳定性:相同值在排序之后原始相对次序是否变化

O(N^2):

冒泡排序:稳定;

插入排序:稳定;

选择排序:不稳定

O(N*logN):

归并排序:稳定;

快速排序:不稳定;

堆排序:不稳定;

5

有关排序问题的补充:
1, 归并排序的额外空间复杂度可以变成O(1), 但是非常难, 不需要掌握, 可以搜“归并排序 内部缓存法”;
2, 快速排序可以做到稳定性, 但是非常难, 不需要掌握,可以搜“01 stable sort”;

​ 面试题陷阱:奇偶稳定排序

3, 有一道题目, 是奇数放在数组左边, 偶数放在数组右边, 还要求原始的相对次序不变, 碰到这个问题, 可以怼面试官。 面试官非良人。

6

认识比较器的使用

​ 在笔试或面试中直接使用,可以嵌入sort()、优先级队列和红黑树中

import java.util.Arrays;
import java.util.Comparator;

public class Demo {
    public static class Student{
        //要比较的对象
        private String name;
        private int id;
        private int age;
        public Student(String name,int id, int age){
            this.name = name;
            this.id = id;
            this.age = age;
        }
    }
    public static class IdAscendingComparator implements Comparator<Student>{
        @Override
        public int compare(Student o1, Student o2){
            //return -, 即o1比o2小,o1排前面;
            //		 +
            //		 0
            return o1.id - o2.id;
        }
    }
    public static class IdDescendingComparator implements Comparator<Student> {
        @Override
        public int compare(Student o1, Student o2){
            return o2.id - o1.id;
        }
    }
    public static void printStudents(Student[] students){
        for(Student student : students){
            System.out.println("Name:" + student.name + ",Id:" + student.id + ",Age:" + student.age);
        }
        System.out.println("========================");
    }
    public static void main(String[] args){
        Student student1 = new Student("A", 1, 23);
        Student student2 = new Student("B", 2, 21);
        Student student3 = new Student("C", 3, 22);

        Student[] students = new Student[] {student1, student2, student3};
        printStudents(students);

        Arrays.sort(students, new IdAscendingComparator());
        //如果不给比较器,那么比较的就是对象的地址
        printStudents(students);

        Arrays.sort(students, new IdDescendingComparator());
        printStudents(students);
        
        //堆的使用
        //TreeMap<> 使用同理
        PriorityQueue<Student> heap = new PriorityQueue<>(new IdDescendingComparator());
        
        heap.add(student1); //入堆
        heap.add(student2);
        heap.add(student3);
        
        while(!heap.isEmpty()){
            Student student = heap.poll(); //弹出堆顶,堆大小减1
            System.out.println("Name:" + student.name + ",Id:" + student.id + ",Age:" + student.age);
        }
    }
}
7

桶排序:计数排序、 基数排序的介绍
1, 非基于比较的排序, 与被排序的样本的实际数据状况很有关系, 所以实际中并不经常使用
2, 时间复杂度O(N), 额外空间复杂度O(N)
3, 稳定的排序

8

补充问题(面试题)
给定一个数组, 求如果排序之后, 相邻两数的最大差值, 要求时间复杂度O(N), 且要求不能用非基于比较的排序。

​ 借用桶排序概念

​ 1、N个数,准备N+1个桶;

​ 2、找出min、max,min=max,则为0;

​ 3、将min到max等分成N+1份,分别放在首尾,因为只有N个数,所以至少会有一个空桶,但只能屏蔽掉同一桶中的数

​ 4、每个同设置3个变量,是否为空(boolean)、min、max;

​ 5、设置全剧最大值, 遍历,每个非空桶的最小值与它前面非空桶的最大值计算差值。

​ 为什么不直接找空桶两边?

​ 有例外:19、null、30、49

import java.util.Arrays;

public class MaxGap{
    public static int maxGap(int[] nums){
        if(nums == null || nums.length < 2){
            return 0;
        }
        int len = nums.length;
        
        //???此处未理解 ——> 为min、max赋初值
        int min = Integer.MAX_VALUE; //int的最大值
        int max = Integer.MIN_VALUE;
        //找到min,max
        for(int i=0; i<len; i++){
            min = Math.min(min, nums[i]);
            max = Math.max(max, nums[i]);
        }
        if(min == max){
            return 0;
        }
        boolean[] hasNum = new boolean[len + 1];
        int[] maxs = new int[len + 1];
        int[] mins = new int[len + 1];
        int bid = 0;
        for(int i=0; i<len; i++){
            bid = bucket(nums[i], len, min, max);
            mins[bid] = hasNum[bid]? Math.min(mins[bid], nums[i]) : nums[i];
            maxs[bid] = hasNum[bid]? Math.max(maxs[bid], nums[i]) : nums[i];
            hasNum[bid] = true;
        }
        int res = 0;
        int lastMax = maxs[0];
        for(int i=1; i<=len; i++){
            if(hasNum[i]){
                res = Math.max(res, mins[i] - lastMax);
                lastMax = maxs[i];
            }
        }
        return res;
    }
    public static int bucket(long num, long len, long min, long max){
        return (int) ((num - min) * len / (max - min));
    }
}
9

介绍一下工程中的综合排序算法

​ 样本量小:插入排序(常数项低);

​ 样本量大:

​ 基础数据类型:快排(不需要稳定);

​ 引用类型数据:归并(稳定);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值