在一个0和1组成的矩阵中寻找面积最大的矩形,初看和上一题思路没什么区别,但其实在实现上可以有另一种思路。原题如下:
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
Example:
Input: [ ["1","0","1","0","0"], ["1","0","1","1","1"], ["1","1","1","1","1"], ["1","0","0","1","0"] ] Output: 6
一、栈
思来想去没有什么更好的办法,只能一行一行地处理,对于没一行记录下从此向上连续1的数量,对应于84题中长条的高度,完全转化为84题,然后直接调用84题的函数即可,做过上一题后这个方法没有多少思维量,贴出具体代码:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
heights.push_back(0);
stack<int> pre;
pre.push(-1);
int n = heights.size(),temp;
int result = heights[0];
for (int i = 0;i < n;i++){
while(pre.top()!=-1 && heights[i]<heights[pre.top()]){
temp = pre.top();
pre.pop();
result = max(result,heights[temp]*(i-pre.top()-1));
}
pre.push(i);
}
return result;
}
int maximalRectangle(vector<vector<char>>& matrix) {
if (matrix.empty()) return 0;
int m = matrix.size(),n = matrix[0].size(),result = 0;
vector<int> dp(n,0);
for (int i = 0;i < m;i++){
for (int j = 0;j < n;j++){
dp[j] = matrix[i][j]=='1' ? dp[j]+1 : 0;
}
result = max(result,largestRectangleArea(dp));
}
return result;
}
};
二、前后双向扫描
此题和84题最大的不同在于竖条的高度在84中是直接给出的,此题需要自己数,正是在这个区别上可以有新的实现。大思路与方法一相同,仍然是一行一行处理,但是在每一行寻找这个左右边界的时候可以通过前后双向扫描确定。
最大的矩形的高一定是直方图中的某一个竖条,宽一定是相邻的所有不低于此值的竖条的集合。问题的关键就在于界定这个集合的范围,这个集合的左边起点一定是左边最近的低于此值的竖条(或者最左边界),右终点一定是右边最近的低于此值的竖条(或者最右边界)。
分别用left和right数组记录上一行的左边界和右边界,再用cur_left和cur_right分别记录当前行的连续1的开始和结尾,当前行某竖条真正的左边界和右边界由它们共同决定。如果当前元素为1,其左边界为left[j]和cur_left中的最大值。原因是当前行竖条j的左边界不会小于上一行竖条j的左边界,也不会当前行小于连续1的开始,这两个条件完全确定了左边界的位置,右边界同理。详细代码如下:
class Solution {
public:
int maximalRectangle(vector<vector<char>>& matrix) {
if (matrix.empty() || matrix[0].empty()) return 0;
int res = 0, m = matrix.size(), n = matrix[0].size();
vector<int> height(n, 0), left(n, 0), right(n, n);
for (int i = 0; i < m; ++i) {
int cur_left = 0, cur_right = n;
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
++height[j];
left[j] = max(left[j], cur_left);
} else {
height[j] = 0;
left[j] = 0;
cur_left = j + 1;
}
}
for (int j = n - 1; j >= 0; --j) {
if (matrix[i][j] == '1') {
right[j] = min(right[j], cur_right);
} else {
right[j] = n;
cur_right = j;
}
res = max(res, (right[j] - left[j]) * height[j]);
}
}
return res;
}
};
84题和85题告诉我,对于一道思路似乎很明确的题也可能有另外的解法,不能随意轻视。