Joseph环问题

问题描述

n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始,每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字)。当一个数字删除后,从被删除数字的下一个继续删除第m个数字。求出在这个圆圈中剩下的最后一个数字。

算法

int JosephCircle(int n, int m) {
	int ret;

	if (n == 0)
		ret = 0;
	else
		ret = (JosephCircle(n-1, m) + m) % n;

	return ret;
}

算法原理

长度为n的标准环,删除第m个元素后,长度为n-1,其中的元素与长度为n-1的标准环成一一对应关系,这样,只要再求出长度为n-1的标准环的问题值既可,从而,问题规模降1,可以递归解决

关键是找出这种对应关系

设原标准环为A0, A1 ... An-1

删除下标为k的元素后为A0, A1 ... Ak-1, Ak+1 .. An-1

形成的新环为                     Ak+1 ...   An-1,        A0 ...            Ak-1

而长度为n-1的标准环为     B0 ...       Bn-k-2,     Bn-k-1 ...     Bn-2

设原环下标为x,n-1标准环下表为y,则x = (y+k+1) % n

由于k = (m - 1) % n

从而得到原环下表和n-1标准环下标的对应关系

所以,若n-1标准环中问题值为r,则再n标准环中,它的值为(r + m) % n


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值