文献阅读 - GloVe: Global Vectors for Word Representation

GloVe是一种全局词向量表示模型,结合了全局矩阵分解和局部上下文窗口方法的优点,利用词频统计信息生成有意义的词向量。通过对词-词共现矩阵的统计信息进行加权最小二乘回归,解决了现有模型的不足,适用于词义理解、词类比等任务。
摘要由CSDN通过智能技术生成

GloVe: Global Vectors for Word Representation


J. Pennington, R. Socher, C. D. Manning, GloVe: Global Vectors for Word Representation, EMNLP (2014)


摘要

现有单词向量空间表示学习(learning vector space representations of words)通过向量运算(vector arithmetic)获取精细语义和语法规则(fine-grained semantic and syntactic regularities),但这些规则可解释性很差(these regularities has remained opaque)。

本文对能够生成融合语义、语法规则词向量的模型所需属性进行分析(analyze and make explicit the model properties needed for such regularities to emerge in word vectors),得到全局对数双线性回归模型(global log-bilinear regression model)。该模型兼具全局矩阵分解(global matrix factorization)和局部上下文窗口方法(local context window methods)的优点。

本文模型训练只使用词-词共现矩阵中的非零元素(efficiently leverages statistical information by training only on the nonzero elements in a word-word co-occurrence matrix),模型生成的词向量空间具有语义结构(a vector space with meaningful substructure)。

1 引言

语义向量空间模型使用实值向量表示词条(semantic vector space models of language represent each word with a real-valued vector)。

词表示质量评价方法:词向量对之间的距离或角度(most word vector methods rely on the distance or angle between pairs of word vectors as the primary method for evaluating the intrinsic quality of such a set of word representations)

词向量(word vectors)的学习方法:(1)全局矩阵分解(global matrix factorization methods),如隐含语义分析(latent semantic analysis,LSA);(2)局部上下文窗口(local context window methods),如skip-gram。

全局矩阵分解能够充分利用统计信息(leverage statistical information),但在词类比任务(the word analogy task)上表现较差,即其向量空间结构非最优(a sub-optimal vector space structure);局部上下文窗口在词类比任务表现更好,但却忽视了语料库(corpus)的统计信息(poorly utilize the statistics of the corpus since they train on separate local context windows instead of on global co-occurrence counts)

2 相关工作

矩阵分解(Matrix Factorization Methods):分解语料库统计信息矩阵(decompose large matrices that capture statistical information about a corpus),使用低秩近似(low-rank approximations)生成维单词表示(generating low-dimensional word representations)。

语料库统计信息矩阵组织形式分为:(1)词条-文档(term-document)类型,行对应词条、列对应文档(the rows correspond to words or terms, and the columns correspond to different documents in the corpus);(2)词条-词条(term-term)类型,行、列均对应词条,矩阵元素对应给定词在目标词上下文中出现的频次(the rows and columns correspond to words and the entries correspond to the number of times a given word occurs in the context of another given word)。

局部窗口(Shallow Window-Based Methods):学习在局部上下文窗口中预测的词表示(learn word representations that aid in making predictions within local context windows),如skip-gram和CBOW(continuous bag-of-words)、vLBL和ivLBL(closely-related vector log-bilinear models)。

skip-gram、ivLBL模型的目标为根据给定词预测上下文(predict a word’s context given the word itself);CBOW、vLBL模型的目标为根据上下文预测给定词(predict a word given its context)。

3 GloVe模型

语料库中词频统计信息(statistics of word occurrences in a corpus)是非监督单词表示学习(unsupervised methods for learning word representations)的主要信息源(source of information available),其核心问题在于:(1)如何根据统计信息生成词义(how meaning is generated from these statistics);(2)词向量如何表示词义(how the resulting word vectors might represent that meaning)。

GloVe模型:语料库全局统计信息(the global corpus statistics)词向量模型。

X \mathbf{X} X:词条共现矩阵(the matrix of word-word co-occurrence counts), X i j X_{ij} Xij:词条 j j j出现在词条 i i i的上下文中的次数, X i = ∑ k X i k X_{i} = \sum_{k} X_{ik} Xi=kXik P i j = P ( j ∣ i ) = X i j X i P_{ij} = P(j | i) = \frac{X_{ij}}{X_{i}} Pij=P(ji)=XiXij表示词条 j j j出现在词条 i i i的上下文中的概率(the probability that word j j j appear in the context of word i i i)。

在这里插入图片描述
由表(1)可知,使用共现概率比(ratios of co-occurrence probabilities)学习词向量应优于单纯使用概率,即

F ( w i , w j , w ~ k ) = P i k P i k (1) F( \mathbf{w}_{i}, \mathbf{w}_{j}, \tilde{\mathbf{w}}_{k} ) = \frac{P_{ik}}{P_{ik}} \tag {1} F(wi,wj,w~k)=PikPik(1)

其中, w ∈ R d \mathbf{w} \in \R^{d} wRd表示词向量、 w ~ ∈ R d \tilde{\mathbf{w}} \in \R^{d} w~Rd表示上下文词向量(context word vectors)

  1. 函数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值