贝叶斯决策理论
贝叶斯决策理论(Bayesian decision theory):假设分类问题有 c c c个类别,各类别的状态用 w i w_{i} wi表示, i = 1 , 2 , … , c i = 1, 2, \dots, c i=1,2,…,c,各类别 w i w_{i} wi的先验概率为 P ( w i ) P(w_{i}) P(wi);给定 d d d维特征空间中某一向量(点) x = [ x 1 , x 2 , … , x d ] T \mathbf{x} = [x_{1}, x_{2}, \dots, x_{d}]^{\text{T}} x=[x1,x2,…,xd]T,且条件概率密度函数(似然,likelihood) p ( x ∣ w i ) p(\mathbf{x} | w_{i})
贝叶斯决策理论用于分类问题,通过计算后验概率P(wi∣x)来确定类别。基于最小错误率,当后验概率最大时作出决策。在二分类问题中,通过比较似然比l(x)和阈值P(w1)P(w2)来决定归属。该理论应用于词义消歧和文本分类等领域。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



