python之multiprocessing

参考:https://zhuanlan.zhihu.com/p/93305921

现在的笔记本电脑,台式机都流行多核心,低频率的架构,原因是低频率低耗电,而多核心又可以在并行计算中表现出色。

多进程 vs. 多线程

多进程 (Multi-Process) 和多线程 (Multi-Thread) 最大的区别是,多进程是在各自单独的进程内存管理下运行代码,而多线程是共享一个进程内存。在各自单独的进程管理下,多进程的明显优势是可以最大的利用计算机多核心的处理能力。但是多进程也有其劣势,比如说在进程之间通信需要 IPC (Inter Process Communication) 工具,而不像多线程那样可以共享内存数据。

Pool使用CPU多核

import multiprocessing
import random
import time

# worker
def worker(name):
    t = 0
    for i in range(2):
        print(name + " " + str(i))
        x = random.randint(1, 3)
        t += x
    time.sleep(t * 0.1)
    return {name:t}

if __name__ == '__main__':

    num_cores = int(multiprocessing.cpu_count())
    pool = multiprocessing.Pool(num_cores)

    # input processes
    jobs = []
    for i in range(10):
        jobs.append(pool.apply_async(worker, args=(str(i))))
    
    results = [p.get() for p in jobs]
    print(results)

输出结果

0 0
0 1
1 0
1 1
2 0
2 1
3 0
3 1
4 0
4 1
5 0
5 1
6 0
6 1
7 0
7 1
8 0
8 1
9 0
9 1
[{'0': 5}, {'1': 3}, {'2': 3}, {'3': 4}, {'4': 4}, {'5': 3}, {'6': 3}, {'7': 3}, {'8': 3}, {'9': 4}]

或者使用map方式

if multi_num > 1:
	pool = Pool(processes=multi_num)
	pool.map(worker, list_idx)
	pool.close()
	pool.join()
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页