剑指 Offer 15. 二进制中1的个数

这里要注意的是可能输入的数是负数

假如没有考虑到,就会有如下失败的解法

class Solution {
public:
     int  NumberOf1(int n) {
         int cnt = 0;
         while(n){
             if(n % 2)
                 cnt++;
             n /= 2;
         }
         return cnt;
     }
};

这只能统计正数的1的个数,当遇到负数时会计算其绝对值的1的个数。例如输入-1,输出是1.实际上-1用补码表示时,结果应该是32。所以这种办法行不通

既然是负数的话,用位运算试试。而且必须是无符号的右移运算。否则遇到负数会卡死。

// 这里有可能是负数,那用位运算比较合适

public class Solution {
    // you need to treat n as an unsigned value
    public int hammingWeight(int n) {
       int numOf1 = 0;
       while(n != 0){
            // 这里位运算的优先级要考虑清楚,&的优先级居然小于==
            if((n & 0x1) == 1)
                numOf1++;
            n >>>= 1;
       }
       return numOf1;
    }
}

当然,用左移运算也是可行的。用flag不断左移和n作与运算

class Solution {
public:
     int  NumberOf1(int n) {
         int flag = 1;
         int cnt = 0;
         while(flag){
             if(flag & n)
                 cnt++;
             flag <<= 1;
         }
         return cnt;
     }
};

算法复杂度

  • 时间复杂度: O ( log ⁡ n ) O(\log n) O(logn),移位运算的次数为 O ( log ⁡ 2 n ) O(\log_{2}n) O(log2n)
  • 空间复杂度: O ( 1 ) O(1) O(1),使用常数空间

下面一种风骚的解法,千言万语都在一图之中
在这里插入图片描述

public class Solution {
    public int hammingWeight(int n) {
        int res = 0;
        while(n != 0) {
            res++;
            n &= n - 1;
        }
        return res;
    }
}

算法复杂度

  • 时间复杂度: O ( M ) O(M) O(M) M M M n n n中1的个数
  • 空间复杂度: O ( 1 ) O(1) O(1),使用常数空间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值