这里要注意的是可能输入的数是负数
假如没有考虑到,就会有如下失败的解法
class Solution {
public:
int NumberOf1(int n) {
int cnt = 0;
while(n){
if(n % 2)
cnt++;
n /= 2;
}
return cnt;
}
};
这只能统计正数的1的个数,当遇到负数时会计算其绝对值的1的个数。例如输入-1,输出是1.实际上-1用补码表示时,结果应该是32。所以这种办法行不通
既然是负数的话,用位运算试试。而且必须是无符号的右移运算。否则遇到负数会卡死。
// 这里有可能是负数,那用位运算比较合适
public class Solution {
// you need to treat n as an unsigned value
public int hammingWeight(int n) {
int numOf1 = 0;
while(n != 0){
// 这里位运算的优先级要考虑清楚,&的优先级居然小于==
if((n & 0x1) == 1)
numOf1++;
n >>>= 1;
}
return numOf1;
}
}
当然,用左移运算也是可行的。用flag不断左移和n作与运算
class Solution {
public:
int NumberOf1(int n) {
int flag = 1;
int cnt = 0;
while(flag){
if(flag & n)
cnt++;
flag <<= 1;
}
return cnt;
}
};
算法复杂度
- 时间复杂度: O ( log n ) O(\log n) O(logn),移位运算的次数为 O ( log 2 n ) O(\log_{2}n) O(log2n)
- 空间复杂度: O ( 1 ) O(1) O(1),使用常数空间
下面一种风骚的解法,千言万语都在一图之中
public class Solution {
public int hammingWeight(int n) {
int res = 0;
while(n != 0) {
res++;
n &= n - 1;
}
return res;
}
}
算法复杂度
- 时间复杂度: O ( M ) O(M) O(M), M M M为 n n n中1的个数
- 空间复杂度: O ( 1 ) O(1) O(1),使用常数空间