bzoj3402 [Usaco2009 Open]Hide and Seek 捉迷藏

18 篇文章 0 订阅

Description

    贝茜在和约翰玩一个“捉迷藏”的游戏.
    她正要找出所有适合她躲藏的安全牛棚.一共有N(2≤N≤20000)个牛棚,被编为1到N号.她知道约翰(捉牛者)从牛棚1出发.所有的牛棚由M(1≤M≤50000)条双向路连接,每条双向路连接两个不同的牛棚.所有的牛棚都是相通的.贝茜认为同牛棚1距离最远的的牛棚是安全的.两个牛棚间的距离是指,从一个牛棚到另一个牛棚最少需要通过的道路数量.请帮贝茜找出所有的安全牛棚.

Input

    第1行输入两个整数N和M,之后M行每行输入两个整数,表示一条路的两个端点.
   

Output

 仅一行,输出三个整数.第1个表示安全牛棚(如果有多个,输出编号最小的);第2个表示牛棚1和安全牛棚的距离;第3个表示有多少个安全的牛棚.

Sample Input

6 7
3 6
4 3
3 2
1 3
1 2
2 4
5 2

Sample Output

4 2 3

跑一遍spfa,然后倒着搜更新那三个数就行了

#include<cstdio>
#include<cstring>
struct edge{
	int to,next,v;
}e[200001];
int head[50001];
int dis[50001];
int q[500001];
bool mrk[50001];
int n,m,cnt,t,w=1,mx=0,rep,num;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
inline void ins(int u,int v,int w)
{
	e[++cnt].v=w;
	e[cnt].to=v;
	e[cnt].next=head[u];
	head[u]=cnt;
}
inline void insert(int u,int v,int w)
{
	ins(u,v,w);
	ins(v,u,w);
}
inline void spfa()
{
	memset(dis,127/3,sizeof(dis));
	q[1]=1;dis[1]=0;mrk[1]=1;
	while (t<w)
	{
		int now=q[++t];
		for (int i=head[now];i;i=e[i].next)
		  if (dis[e[i].to]>dis[now]+e[i].v)
		  {
		  	dis[e[i].to]=dis[now]+e[i].v;
		  	if (!mrk[e[i].to])
		  	{
		  		q[++w]=e[i].to;
		  		mrk[e[i].to]=1;
		  	}
		  }
		mrk[now]=0;
	}
}
int main()
{
	n=read();
	m=read();
	for (int i=1;i<=m;i++)
	  {
	  	int x=read(),y=read();
	  	insert(x,y,1);
	  }
	spfa();
	for (int i=n;i>=2;i--)
	{
		if (dis[i]>mx)
		{
			mx=dis[i];
			num=i;
			rep=1;
		}else
		if (dis[i]==mx)
		{
			num=i;
			rep++;
		}
	}
	printf("%d %d %d\n",num,mx,rep);
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值