法院项目实践随笔(2)——神经网络

神经网络

       什么是神经网络?自己在学习的时候,查了很多资料,看了一些论文,在最后发现,知乎里面的一些大佬说的真的很详细很生动,附上网址https://www.zhihu.com/question/22553761 自己看过后也做了一些总结,一些很具体的计算公式就不贴了。

什么是神经网络?

        神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。人脑中的神经网络是一个非常复杂的组织。成人的大脑中估计有1000亿个神经元之多,先来看看真正的神经元:

                                (图来自维基百科)    

        

        神经元大致可以分为树突、突触、细胞体和轴突。树突为神经元的输入通道,其功能是将其他神经元的动作电位传递至细胞体。其他神经元的动作电位借由位于树突分支上的多个突触传递至树突上。神经细胞可以视为有两种状态的机器,激活时为“是”,不激活时为“否”。神经细胞的状态取决于从其他神经细胞接收到的信号量,以及突触的性质(抑制或加强)。当信号量超过某个阈值时,细胞体就会被激活,产生电脉冲。电脉冲沿着轴突并通过突触传递到其它神经元。那么机器学习中的神经网络是如何实现这种模拟的,并且达到一个惊人的良好效果的?
        1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP。神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。
                            
        连接是神经元中最重要的东西。每一个连接上都有一个权重。一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。而这样的一个神经元模型实际上是一个分类器,他将 输入的数值向量经过计算和激活,映射到一个数值中(0和1)。假设我们输入是一系列的2个值(二维坐标),输出是一个值,类似于下图:
                                
        输入是坐标x,y,经过权重求和后ax+by得到一个值k,经过激活函数(判断是否大于0,是为1,不是为0),为了达到分类效果,即1代表圆形,0代表三角形,就是找到符合这条虚线的a和b,即通过训练找到合适的权重。一条直线能划分一个平面,一个平面能划分一个三维空间,一个n-1维超平面把n维空间一分为二,神经元的实质就是把特征空间一切两半,认为两半分别属两个类。与人脑不同,我们可以很直观的看出上图的直线位置在哪,但是机器不行。对于机器来说,要想找出这条直线,首先得随机选出一条直线,然后将每个点带进去,例入带进去一个圆点坐标,看输出是否是1,不是说明这条直线分错边了,需要修改,这时候就要一点点改变权值a,b,不断地带入点,不断的修改,到最终所有点都正确,就能找到一条一分为二的直线了。
       每个神经元内部做的计算过程&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值