神经网络简单实例

1. 关于非线性转化方程(non-linear transformation function)
sigmoid函数(S 曲线)用来作为activation function:
     1.1 双曲函数(tanh)
     
     1.2  逻辑函数(logistic function)
2. 实现一个简单的神经网络算法
import numpy as np

def tanh(x):  #双曲函数
    return np.tanh(x)

def tanh_deriv(x):#更新权重时,需要用到双曲函数的倒数
    return 1.0 - np.tanh(x)*np.tanh(x)

def logistic(x):#构建逻辑函数
    return 1/(1 + np.exp(-x))

def logistic_derivatic(x):  #逻辑函数的倒数
    return logistic(x)*(1 - logistic(x))

class NeuralNetwork:
    def __init__(self,layer,activation='tanh'):
        '''
        :param layer:A list containing the number of unit in each layer.
        Should be at least two values.每层包含的神经元数目
        :param activation: the activation function to be used.Can be
        "logistic" or "tanh"
        '''
        if activation == 'logistic':
            self.activation = logistic
            self.activation_deriv = logistic_derivatic
        elif activation == 'tanh':
            self.activation = tanh
            self.activation_deriv = tanh_deriv

        self.weights = []
        for i in range(1,len(layer) - 1):#权重的设置
            self.weights.append((2*np.random.random((layer[i - 1] + 1,layer[i] + 1))-1)*0.25)
            self.weights.append((2*np.random.random((layer[i] + 1,layer[i+1]))-1)*0.25)
    '''训练神经网络,通过传入的数据,不断更新权重weights'''
    def fit(self,X,y,learning_rate=0.2,epochs=10000):
        '''
        :param X: 数据集
        :param y: 数据输出结果,分类标记
        :param learning_rate: 学习率
        :param epochs: 随机抽取的数据的训练次数
        :return:
        '''
        X = np.atleast_2d(X) #转化X为np数据类型,试数据类型至少是两维的
        temp = np.ones([X.shape[0],X.shape[1]+1])
        temp[:,0:-1] = X
        X = temp
        y = np.array(y)

        for k in range(epochs):
            i = np.random.randint(X.shape[0])  #随机抽取的行
            a = [X[i]]

            for I in range(len(self.weights)):#完成正向所有的更新
                a.append(self.activation(np.dot(a[I],self.weights[I])))#dot():对应位相乘后相加
            error = y[i] - a[-1]
            deltas = [error * self.activation_deriv(a[-1])]#*self.activation_deriv(a[I])#输出层误差
            # 反向更新
            for I in range(len(a) -2,0,-1):
                deltas.append(deltas[-1].dot(self.weights[I].T)*self.activation_deriv(a[I]))
            deltas.reverse()
            for i in range(len(self.weights)):
                layer = np.atleast_2d(a[i])
                delta = np.atleast_2d(deltas[i])
                self.weights[i] += learning_rate*layer.T.dot(delta)

    def predict(self,x):
        x = np.array(x)
        temp = np.ones(x.shape[0] + 1)
        temp[0:-1] = x
        a = temp
        for I in range(0,len(self.weights)):
            a = self.activation(np.dot(a,self.weights[I]))
        return a  #只需要保存最后的值,就是预测出来的值
nn = NeuralNetwork([2,2,1], 'tanh')
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(X, y)
for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
    print(i, nn.predict(i))

'''手写测试识别数字代码'''
from sklearn.datasets import load_digits #导入数据集
from sklearn.metrics import confusion_matrix,classification_report   #对结果的预测的包
from sklearn.preprocessing import LabelBinarizer  #把数据转化为二维的数字类型
from sklearn.cross_validation import train_test_split   #可以把数据拆分成训练集与数据集

digits = load_digits()  #把数据改成0到1之间
X = digits.data
y = digits.target
X -= X.min()
X /= X.max()

nn = NeuralNetwork([64,100,10],'logistic')
X_train,X_test,y_train,y_test = train_test_split(X,y)
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print("start fitting")
nn.fit(X_train,labels_train,epochs=3000)
predictions = []
for i in range(X_test.shape[0]):
    o = nn.predict(X_test[i])
    predictions.append(np.argmax(o))
print(confusion_matrix(y_test,predictions))
print(classification_report(y_test,predictions))
循环神经网络(Recurrent Neural Network,RNN)是一种具有记忆能力的神经网络,适用于处理序列数据。下面是一个简单的循环神经网络的例子: 假设我们要建立一个循环神经网络来预测一段文本中的下一个字符。我们可以将每个字符表示为一个独热向量(one-hot vector),然后这些向量作输入序列输入到循环神经网络。 首先,我们需要定义循环神经网络的结构。一个简单的循环神经网络由一个循环层和一个输出层组成。循环层中的每个单元都有一个隐藏状态,用于存储之前的信息。 在每个时间步,循环神经网络会接当前时间步的输入字符向量和上一个时间步的隐藏状态作为输入,并计算当前时间步的隐藏状态。然后,将当前时间步的隐藏状态传递给下一个时间步使用。 最后,我们可以将最后一个时间步的隐藏状态输入到输出层中,通过一个全连接层得到预测的下一个字符。 下面是一个简化的循环神经网络的示意图: ``` 输入字符1 输入字符2 输入字符3 ↓ ↓ ↓ ┌───────┐ ┌───────┐ ┌───────┐ │ │ │ │ │ │ │ 隐藏状态 │←─────│ 隐藏状态 │←─────│ 隐藏状态 │ │ │ │ │ │ │ └───────┘ └───────┘ └───────┘ ↓ ↓ ↓ ┌───────┐ ┌───────┐ ┌───────┐ │ │ │ │ │ │ │ 输出层 │→─────│ 输出层 │→─────│ 输出层 │ │ │ │ │ │ │ └───────┘ └───────┘ └───────┘ ↓ ↓ ↓ 预测字符1 预测字符2 预测字符3 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值