高代绿皮书第四版课后习题复习题一 T1

原题


计算下列 n 阶行列式的值

|A|=\left| \begin{matrix} {​{a}_{1}} & {​{b}_{2}} & {​{b}_{3}} & \cdots & {​{b}_{n}} \\ {​{c}_{2}} & {​{a}_{2}} & 0 & \cdots & 0 \\ {​{c}_{3}} & 0 & {​{a}_{3}} & \cdots & 0 \\ \vdots & \vdots & \vdots & {} & \vdots \\ {​{c}_{n}} & 0 & 0 & \cdots & {​{a}_{n}} \\ \end{matrix} \right|

其中

a_{i}\neq 0\,(2\leq i\leq n)


解析


思路:

此为一般式的爪型行列式

分别用后 n-1 列消去第1列中后 n-1 行的元素

-\displaystyle \frac{c_{i}}{a_{i}}\,c_{i}+c_{1}\,(i=2,3,\cdots,n)

即可化为上三角行列式进行求解

参考解题细节:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值