高代绿皮第四版课后习题1.4 T3

原题


证明:

当n为奇数时,n阶反对称行列式值等于0


解析


思路:

根据反对称行列式的定义可知

a_{ij}=-a_{ji}

不妨记 |A| 为n阶反对称行列式, |A'| 为 |A| 的转置

则有

|A'|=(-1)^{n}|A|

又n为奇数且 |A'|=|A|

故有

|A|=-|A|

|A|=0

参考解题细节:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值