从启发式到模型化 京东推荐广告排序机制演化

本文介绍了广告排序机制的前世今生,分析电商场景下推荐广告排序机制面临的挑战。结合京东业务,阐述其推荐广告排序拍卖机制的演化,包括复杂业务场景下流量价值准确衡量、模糊用户兴趣场景下流量高效探索利用、多品拍卖场景下流量高效公平变现,助力业务增长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、序言:广告排序机制的前世今生

1.1、简介:广告排序机制

在线广告是国内外各大互联网公司的重要收入来源之一,而在线广告与传统广告最大的区别就在于其超大规模的实时竞价环境:数以万计的广告主在一天内可以参与亿级别的流量竞拍。在这复杂的实时竞价环境中,广告系统的重排模块(Rerank)担负着确定 流量最终分发以及计费方式的重要职责。其中,流量分发会决定最终曝光的广告物料,而流量计费则会对曝光广告进行合理的收费,转化为广告收入。

不同于自然搜推系统侧重用户体验的场域定位,广告流量场考量的是在 用户体验约束下的流量变现问题。在这个背景下,传统重排模块(Rerank)在电商在线广告中的业务定位发生了相应的变化,需在原有多业务目标(点击、GMV、时长等)基础上进一步兼顾平台广告收入,同时对胜出的广告进行合理公平的计费。由于其特殊的业务属性,广告系统中的重排有时也被称为 广告排序机制,其目的旨在促进用户、商家以及平台三方互利共赢。

结合业务背景和系统功能,我们将 广告排序机制的目标 定义如下,

广告排序机制目标:根据系统上游提供的物料(召回 / 粗排)及 流量价值预估值(精排pctr、出价bid等),综合考虑 用户体验(上下文、多样性等)、 平台收益(点击、收入、GMV等),设计 激励相容(鼓励广告主说真话)的 拍卖机制(分配和计费规则)。



1.2、前世:经济学视角下的传统拍卖机制

在排序机制目标中我们提到了 激励相容(鼓励广告主说真话),事实上,激励相容是经济学中机制设计的重要原则之一。下面,我们简要回顾一下传统拍卖机制的经济学相关背景,

1.「机制设计」从经济学的视角来看,广告流量的分配及售卖可以被看作是 机制设计(Mechanism Design)【1】中的一类问题,拍卖机制设计及其相关工作在过去60年中,先后四次获得诺贝尔经济学奖。经典拍卖机制如GSP、VCG由于其良好的博弈性质以及易于实现的特点使其在2002年前后开始被互联网广告大规模的使用。

2.「广告主类型」传统拍卖机制往往假设广告主是利益最大化(Utility Maximizer)的,即最大化GMV与成本的差值,然而,随着智能营销手段在广告投放端的普及,越来越多的广告主通过向平台表达期望成本和目标,借助智能出价的算法能力进行广告实时投放,广告主的类型逐渐转变为价值最大化(Value Maximizer)【2】,即在满足成本约束的条件下最大化分配价值(例如GMV),而非单纯追求差值的最大化。

3.「激励相容约束」鼓励广告主在平台按照真实意愿出价是拍卖机制设计中一项非常重要的经济学约束,激励相容的拍卖机制通过鼓励广告主说真话,大大简化了出价策略设计,优化了博弈环境,同时也为平台设计收入最大化的机制提供了更便捷的抓手。

4.「个体理性约束」除了激励相容的约束以外,一个良好的拍卖机制还需满足个体理性的约束条件,简单来说,个体理性的约束条件要求平台对广告主的最终收费不高于广告主的出价,保障广告主的最低收益非负

1.3、今生:电商场景下的推荐广告排序机制

随着互联网广告的飞速发展,流量增长迅速,用户规模及行为都更加庞大且丰富,广告物料也从原来简单的商品展示,拓展到了包含聚合页、活动、店铺、视频以及直播等多种多样的物料类型,此外,广告主的目标和表达方式也从原先的手动出价,转变为了由平台代理的,带有预算和成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值