图论之稳定婚姻问题

问题描述 :

现在有 n 男 n 女,每个人对异性的好感有一个排序,问你怎样使得每个男女都可以找到心仪的对象 (即不会出现 u、v (一男一女) 他们相互喜欢程度大于对自己现在伴侣的喜欢程度)

解决方法 :

使用求婚拒绝算法解决这类问题 : 对于每一个没有订婚的男士按照喜欢程度依次向他未求过婚女士求婚,女士在向她求婚的所有人中选择一个最喜欢的订婚,并且拒绝其他人 (注意 : 女士可以抛弃自己现在的未婚夫)

不难证明这种情况下不会出现不稳定关系 ! 这就是这个问题的解决方法 附代码

#include <iostream>
#include <queue>
#include <cstdio>
#include <algorithm>
using namespace  std;

const int maxn = 1010;
int pref[maxn][maxn],order[maxn][maxn],nexT[maxn];
int future_husband[maxn],future_wife[maxn];
queue <int> q;

void engage (int man,int woman) {
    int m = future_husband[woman];
    if (m) {
        future_wife[m] = 0;
        q.push(m);
    }
    future_wife[man] = woman;
    future_husband[woman] = man;
}


int main () {
    ios_base :: sync_with_stdio(false);
    int T;
    cin >> T;
    while (T --) {
        int n;
        cin >> n;
        while (!q.empty()) q.pop();
        for (int i = 1;i <= n; ++ i) {
            for (int j = 1;j <= n; ++ j)
                cin >> pref[i][j];
            nexT[i] = 1;
            q.push(i);
        }
        for (int i = 1;i <= n; ++ i) {
            for (int j = 1;j <= n; ++ j) {
                int x;
                cin >> x;
                order[i][x] = j;
            }
            future_husband[i] = 0;
        }
        while (!q.empty()) {
            int man = q.front();
            q.pop();
            int woman = pref[man][nexT[man] ++];
            if (!future_husband[woman])
                engage(man, woman);
            else if (order[woman][man] < order[woman][future_husband[woman]]) {
                engage(man, woman);
            }
            else
                q.push(man);
        }
        for (int i = 1;i <= n; ++ i) {
            cout << future_wife[i] << ' ';
        }
        cout << endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值