图的深度遍历
Time Limit: 1000ms Memory limit: 65536K
题目描述
请定一个无向图,顶点编号从0到n-1,用深度优先搜索(DFS),遍历并输出。遍历时,先遍历节点编号小的。
输入
输入第一行为整数n(0 < n < 100),表示数据的组数。 对于每组数据,第一行是两个整数k,m(0 < k < 100,0 < m < k*k),表示有m条边,k个顶点。 下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
输出
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示DFS的遍历结果。
示例输入
1 4 4 0 1 0 2 0 3 2 3
示例输出
0 1 2 3
提示
深度優先搜索遍曆:從圖中某個初始頂點v出發,首先訪問初始頂點v,然後選擇一個與頂點v相鄰且沒訪問過的頂點w為初始頂點,再從w出發進行深度優先搜索,直到圖中與當前節點v鄰接的所有頂點都被訪問過為止。顯然,這是遞歸過程。
先是鄰接矩陣:
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
int g[100][100];
int v[100];
int flag;
void dfs(int n,int k)
{
if(!flag)
{
cout<<k;
flag=1;
}
else cout<<" "<<k;
v[k]=1;
for(int i=0; i<n; i++)
{
if(g[k][i]&&!v[i])
{
dfs(n,i);
}
}
}
int main()
{
int n;
cin>>n;
while(n--)
{
int k,m;
cin>>k>>m;
memset(g,0,sizeof(g)); //在这道题中清零与否无所谓
memset(v,0,sizeof(v));
for(int i=0; i<m; i++) //建立邻接矩阵
{
int u,v;
cin>>u>>v;
g[u][v]=g[v][u]=1;
}
flag=0;
dfs(k,0);
cout<<endl;
}
return 0;
}
鄰接表:
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
int flag;
struct node
{
int d;
node *next;
}*graph[110];
int v[110];
void add(int u,int v) //建表
{
node *p=new node;
p->d=v;
p->next=graph[u]->next;
graph[u]->next=p;
}
void g_sort(int k) //排序
{
for(int i=0; i<k; i++)
for(node *p=graph[i]->next; p; p=p->next)
for(node *q=p->next; q; q=q->next)
{
if(p->d>q->d)
{
int tmp=p->d;
p->d=q->d;
q->d=tmp;
}
}
}
void dfs(int n,int k)
{
if(!flag)
{
cout<<k;
flag=1;
}
else cout<<" "<<k;
v[k]=1;
node *p=graph[k]->next;
while(p)
{
if(!v[p->d])
dfs(n,p->d);
p=p->next;
}
}
int main()
{
int n;
cin>>n;
for(int i=0; i<110; i++) //申请内存
{
graph[i]=new node;
}
while(n--)
{
int k,m;
cin>>k>>m;
for(int i=0; i<k; i++) //清零
{
graph[i]->next=NULL;
}
memset(v,0,sizeof(v));
for(int i=0; i<m; i++)
{
int u,v;
cin>>u>>v;
add(u,v);
add(v,u);
}
g_sort(k);
flag=0;
dfs(k,0);
cout<<endl;
}
return 0;
}