《解锁万相2.1大模型:开启视频创作新世界》:此文为AI自动生成
万相 2.1 大模型初印象
在人工智能飞速发展的当下,大模型领域的每一次突破都备受瞩目。2025 年 2 月 25 日晚间,阿里巴巴带来了一个令人振奋的消息:阿里云视频生成大模型万相 2.1(Wan)正式开源 。这一消息瞬间在 AI 圈引发了广泛关注,也让众多开发者和视频创作爱好者们对万相 2.1 充满了期待。
万相 2.1 作为阿里云通义系列 AI 模型的重要成员,自发布以来就展现出了其在视频生成领域的卓越实力。在权威评测集 VBench 中,它以总分 86.22% 的优异成绩,大幅超越了 Sora、Luma、Pika 等国内外知名模型,稳稳占据榜首位置,成为了视频生成大模型领域的一颗耀眼新星。
此次开源,阿里巴巴采用了最宽松的 Apache2.0 协议,将 14B 和 1.3B 两个参数规格的全部推理代码和权重毫无保留地开放出来。这意味着全球的开发者们都可以在 Github、HuggingFace、魔搭社区轻松下载体验,为他们提供了一个探索和创新的强大平台。 其中,14B 版本的万相模型在指令遵循、复杂运动生成、物理建模、文字视频生成等多个关键方面表现得尤为突出。无论是复杂的人物肢体运动,如旋转、跳跃、转身、翻滚,还是碰撞、反弹、切割等复杂真实物理场景,它都能精准还原,仿佛拥有一双 “洞察万物” 的眼睛,将现实世界的动态变化栩栩如生地呈现在视频之中。
而 1.3B 版本的万相模型也毫不逊色,它不仅超过了许多更大尺寸的开源模型,甚至在某些性能上与部分闭源模型接近。更为惊喜的是,它能够在消费级显卡上运行,仅需 8.2GB 显存就可以生成高质量视频 。这一特性大大降低了使用门槛,让更多普通用户和小型开发者团队也能够享受到 AI 视频生成的乐趣和便利,为二次模型开发和学术研究提供了广阔的空间。 从算法设计来看,万相 2.1 基于主流 DiT 架构和线性噪声轨迹 Flow Matching 范式,研发了高效的因果 3D VAE、可扩展的预训练策略等先进技术。以 3D VAE 为例,为了实现对任意长度视频的高效编码和解码,万相 2.1 在 3D VAE 的因果卷积模块中巧妙地实现了特征缓存机制。这一机制就像是为视频编码和解码过程搭建了一条 “高速通道”,代替了直接对长视频端到端的编解码过程,从而实现了无限长 1080P 视频的高效编解码。同时,通过将空间降采样压缩提前,在不损失性能的情况下进一步减少了 29% 的推理时内存占用,可谓是在提升性能的同时,还兼顾了资源的高效利用。
万相 2.1 还是首个支持中文文字生成及中英文文字特效生成的视频生成模型 。在指令遵循方面,它能够严格依照镜头移动等指令输出视频,对长文本指令也能准确理解和执行。这使得创作者在使用过程中,能够更加精准地表达自己的创意和想法,让视频内容与心中所想完美契合。 总的来说,万相 2.1 大模型凭借其卓越的性能、创新的技术以及开源的诚意,为视频生成领域带来了新的活力和无限可能。它就像是一把神奇的钥匙,为我们打开了一扇通往 AI 视频创作新世界的大门,让我们迫不及待地想要深入了解它的使用方法,去探索其中的奥秘。
前期准备:搭建使用环境
在深入体验万相 2.1 大模型的强大功能之前,我们首先需要为其搭建一个稳定且适配的运行环境。这就好比为一场精彩的演出搭建舞台,只有舞台搭建好了,才能让演员们尽情展现他们的才华。接下来,我们就从硬件和软件两个方面来详细了解一下搭建使用环境的具体步骤。
(一)硬件需求早知道
万相 2.1 模型有不同的参数规模版本,对硬件的要求也有所不同 。对于 1.3B 版本的模型,它的一大亮点就是对硬件要求相对较低,仅需 8.2GB 显存就能生成 480P 视频,这使得它可以在几乎所有消费级 GPU 上运行。例如,常见的 NVIDIA GeForce RTX 30 系列、40 系列显卡都能够满足其基本运行需求。如果你使用的是 RTX 4090 显卡,在未使用量化等优化技术的情况下,大约 4 分钟内就能生成 5 秒的 480P 视频 ,为用户提供了较为高效的创作体验。
而对于 14B 版本的模型,由于其参数规模更大,模型复杂度更高,对硬件的性能要求也更为苛刻。一般来说,需要配备专业级别的 GPU,如 NVIDIA A100、H100 等,这些 GPU 具有更高的显存带宽和计算能力,能够更好地支持模型的复杂运算。同时,还需要搭配足够大的内存,建议至少为 64GB 及以上,以确保在处理复杂任务时系统的流畅性。此外,高性能的 CPU 也能为模型的运行提供一定的辅助支持,比如在数据预处理等环节,能够加快数据的读取和传输速度。
(二)软件安装进行时
在了解了硬件需求后,我们就可以开始进行软件安装了。这里我们以在 Linux 系统下安装为例,为大家详细介绍安装步骤。
首先,我们需要克隆仓库。打开终端,输入以下命令: