Flink系列之:基于Flink CDC2.0实现海量数据的实时同步和转换 一、CDC技术 二、Flink CDC技术 三、传统数据集成方案的痛点 1.传统数据入仓架构1.0 2.传统数据入仓架构2.0 3.传统CDC ETL分析 四、基于Flink CDC的海量数据的实时同步和转换 1.Flink CDC增量快照读取算法 2.flink CDC存储友好的写入设计 3.Flink CDC入湖架构 4.Flink CDC ETL分析 5.强大的transformation能力 6.Flink CDC实现异构数据源集成 7.Flink CDC实现分库分表集成 一、CDC技术 从原理上可以分为两大类: 基于查询的CDC:例如DataX 离线调度查询作业、批处理 无法保障数据一致性 不保障实时性 基于日志的CDC:例如canal、debezium 实时消费日志,流式处理