InfluxDB和InfluxDB数据采集Connector
一、InfluxDB
- InfluxDB是一个开源的时间序列数据库,专门用于处理大量时间序列数据的存储和查询。它是一个高性能、可扩展且易于使用的数据库,广泛应用于监控、传感器数据、实时分析和物联网等领域。
- InfluxDB的设计目标是针对时间序列数据的特点进行优化,以提供高效的写入和查询性能。它使用了一种称为“时间序列数据库(TSDB)”的数据模型,其中数据按照时间顺序进行组织和存储。这种数据模型使得InfluxDB非常适合于存储和分析时间相关的数据,例如传感器测量数据、系统指标、日志等。
二、InfluxDB特点
InfluxDB具有以下特点:
- 高性能写入:InfluxDB通过使用基于日志的引擎和内存索引等技术,实现了高速的写入性能。它可以同时处理大量的写入请求,并能够轻松处理高并发情况。
- 灵活的数据模型:InfluxDB的数据模型非常灵活,可以根据需求定义不同的数据结构和标签。它支持对数据进行标记,以便更好地组织和查询数据。
- 强大的查询功能:InfluxDB提供了丰富的查询功能,可以对存储的时间序列数据进行灵活的查询和聚合。它支持常见的SQL查询语法,同时还提供了特定的时间序列函数和操作符,以便更方便地处理时间序列数据。
- 可扩展性:InfluxDB可以通过水平扩展来处理大规模的数据。它支持数据的分片和复制,以便实现数据的高可用性和负载均衡。
- 轻量级和易于安装:InfluxDB是一个轻量级的数据库,可以很容易地安装和部署。它提供了各种语言的客户端库和API,以便与其他应用程序和工具进行集成。
- 总之,InfluxDB是一个专门用于存储和查询时间序列数据的高性能数据库。它的设计目标是提供高效的写入和查询性能,同时具备灵活的数据模型和强大的查询功能。它广泛应用于监控、传感器数据、实时分析和物联网等领域。
三、Confluent平台的InfluxDB源连接器
- Kafka Connect InfluxDB源连接器允许您将来自InfluxDB主机的数据导入到Apache Kafka主题中。
- 数据是通过定期执行Influx查询并为结果集中的每一行创建一个输出记录来加载的。默认情况下,数据库中的所有测量值都被复制,每个测量值都有自己的输出主题。数据库会监视新的测量值并自动适应。当从测量中复制数据时,连接器仅加载新记录。
四、特征
- 该源连接器支持复制具有各种InfluxDB数据类型的测量值,动态添加来自数据库的测量值,白名单和黑名单,不同的轮询间隔以及其他设置。然而,对于大多数用户来说,最重要的功能是控制如何从数据库中增量复制数据的设置。
- Kafka Connect会跟踪从每个测量值检索到的最新记录,因此它可以在下一次迭代(或在崩溃的情况下)从正确的位置开始。源连接器使用此功能在每次迭代中仅获取测量值(或自定义查询的输出)中的更新记录。支持多种模式,每种模式在检测修改的行方面有所不同。
- InfluxDB源连接器包括以下功能:
- 至少一次传递
- 支持一个任务
至少一次传递
- 这个连接器保证记录至少一次被送达到Kafka主题。如果连接器重新启动,Kafka主题中可能会出现一些重复的记录。
支持一个任务
- InfluxDB Source连接器支持运行单个任务,当以查询模式启动时会初始化任务。否则,连接器将根据最小数量的测量或配置的最大任务数来初始化任务。
五、许可证
- 可以在没有许可密钥的情况下,在30天的试用期内使用此连接器。
30天后,您必须购买连接器订阅,其中包括给订阅者提供的Confluent企业许可证密钥,以及针对Confluent平台和您的连接器的企业级支持。