多因子模型的数据处理

优质博文:IT-BLOG-CN
在这里插入图片描述

数据处理的基本目的是从多量的、可能是杂乱无章的、难以理解的数据中抽取并推导出有价值、有意义的数据。特别是金融数据,存在数据缺失,不完整以及极端异常值等问题,对于我们的分析和建模影响很多。

对于我们分析多因子模型来说,我们进行数据处理主要有以下两个原因:
【1】原始数据使用到因子中会存在很多杂音,对于我们进行因子分析有很多的影响,
【2】各因子结合在一起来分析模型的主动收益时,要求各因子数据的分布要相互匹配(类似的分布)。

首先,我们先处理极端异常值Outliers,处理异常值的方法有成千上万种,其中我们使用最多并且非常有效的方法是如下公式:
在这里插入图片描述

以上两个公式分别决定了数据的上限和下限,其中N常取23, 分别是将全部数据从小到多排序75%25%百分率对应的数据值,m是整列数据的中位数。

按照如上方法处理完异常值后,需检验我们的数据是否充分处理。我们检验的标准是:先计算经处理数据的偏度Skewness

评论 84
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿进阶

千言万语都不及一句“谢谢”

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值