优质博文:IT-BLOG-CN
数据处理的基本目的是从多量的、可能是杂乱无章的、难以理解的数据中抽取并推导出有价值、有意义的数据。特别是金融数据,存在数据缺失,不完整以及极端异常值等问题,对于我们的分析和建模影响很多。
对于我们分析多因子模型来说,我们进行数据处理主要有以下两个原因:
【1】原始数据使用到因子中会存在很多杂音,对于我们进行因子分析有很多的影响,
【2】各因子结合在一起来分析模型的主动收益时,要求各因子数据的分布要相互匹配(类似的分布)。
首先,我们先处理极端异常值Outliers
,处理异常值的方法有成千上万种,其中我们使用最多并且非常有效的方法是如下公式:
以上两个公式分别决定了数据的上限和下限,其中N
常取2
或3
, 分别是将全部数据从小到多排序75%
,25%
百分率对应的数据值,m
是整列数据的中位数。
按照如上方法处理完异常值后,需检验我们的数据是否充分处理。我们检验的标准是:先计算经处理数据的偏度Skewness