GRPC 压缩算法

RPC

Remote Procedure Call的简称,中文叫远程过程调用。用于解决分布式系统中服务之间的调用问题。通俗地讲,就是开发者能够像调用本地方法一样调用远程的服务。所以,RPC的作用主要体现在这两个方面:

  • 屏蔽远程调用跟本地调用的区别,让我们感觉就是调用项目内的方法;
  • 隐藏底层网络通信的复杂性,让我们更专注于业务逻辑的开发。

长期以来,谷歌有一个名为 Stubby 的通用 RPC 框架,用来连接成千上万的微服务,这些微服务跨多个数据中心并且使用完全不同的技术来构建。
Stubby 的核心 RPC 层每秒能处理数百亿次的互联网请求。Stubby有许多很棒的特性,但无法标准化为业界通用的框架,这是因为它与谷歌内部的基础设施耦合得过于紧密。

GRPC

2015 年,谷歌发布了开源 RPC 框架 gRPC,由google内部的Stubby框架演化而来。这个 RPC 基础设施具有标准化、可通用和跨平台的特点,旨在提供类似 Stubby 的可扩展性、性能和功能,但它主要面向社区。用于减小网络传输数据大小的技术。它将发送的数据压缩为较小的尺寸,以减少带宽占用和提高网络性能。压缩算法可以在数据发送之前对其进行压缩,并在接收端解压缩,使数据能够原样恢复。gRPC+提供了多种压缩算法,以满足不同的需求和环境。这些算法使用不同的压缩技术和策略,例如字典编码、熵编码和预测编码等。根据数据类型、网络带宽和延迟要求等因素,选择合适的压缩算法非常重要。
作用:数据在网络上传输时,需要消耗带宽和时间。高带宽和低延迟的网络连接可以提供快速的数据传输,但是在某些情况下,网络条件可能较差或带宽受限。在这种情况下,压缩算法可以帮助减小数据量,减少传输的时间和网络占用。+压缩算法还可以降低网络传输的成本。使用较小的数据尺寸传输需要的带宽更少,这意味着可以减少使用的网络资源和相关费用。+另外,压缩算法还可以提高整体的网络性能。较小的数据传输量意味着可以更快地完成数据传输,减少了网络延迟和响应时间。这对于实时应用程序和对网络敏感的任务非常重要。

压缩算法

gRPC+提供了多种压缩算法供选择。以下是一些常见的选项:

  • gRPC内置的算法:gRPC提供了一些内置的压缩算法,包括Gzip、Deflate和Snappy等。这些算法都是通用的压缩算法,使用起来非常简单,并且可以满足大多数场景的需求。
  • brotli:Brotli是一种新兴的开源压缩算法,由Google开发。它能够以更高的压缩比和更低的延迟来减小数据尺寸。Brotli在某些情况下比传统的压缩算法效果更好,特别适用于大数据块的压缩。
  • zstd:Zstd是另一种高效的压缩算法,由Facebook开发。它具有可配置的压缩比和压缩速度,可以根据需求进行调整。Zstd在多种应用中都有良好的表现,特别适用于高带宽、高延迟的环境。
  • LZ4是一种极快的无损压缩算法,适用于对压缩速度要求较高的场景。它能够以接近硬盘传输速率的速度进行压缩和解压缩,具有出色的性能表现。
    以上仅是一些常见的选项,实际上还有其他许多压缩算法可供选择。选取适当的算法需要考虑压缩比、压缩速度、解压缩速度以及资源消耗等因素。
    如何选择:
    选择合适的压缩算法取决于多个因素。以下是一些参考的指导原则:
  • 数据类型:不同的数据类型可能对压缩算法有不同的需求。例如,文本数据和二进制数据通常需要不同的压缩策略。因此,需要根据数据类型来选择合适的算法。
  • 压缩比和速度:有些场景需要高压缩比,而有些场景则需要更快的速度。根据实际需求选择合适的算法。例如,如果对网络带宽要求不高,但是延迟要求较低,可以选择高压缩比的算法;如果对带宽要求较高,但是压缩速度要求也高,可以选择速度更快的算法。
  • 网络条件:考虑网络带宽和延迟对算法选择的影响。如果网络带宽受限,可以选择更高压缩比的算法;如果网络延迟较高,可以选择速度更快的算法。
  • 服务和客户端支持:确保选择的算法在服务和客户端上都有良好的支持。一些算法可能需要在服务器和客户端上都进行配置和启用。

官网地址

核心设计思路

  • 网络通信 ------> gRPC 自己封装了网络通信的部分,提供了多种语言的 网络通信的封装,解决异构服务的问题 (CJava[Netty] Go)
  • 协议 ------> HTTP2 传输数据的时候 使用二进制的数据内容。支持双向流(双工) 支持连接的多路复用
  • 序列化 ------> 数据传输的格式,主要有两种 基于文本(JSON) 基于二进制 java原生的序列化方式,谷歌开源的序列化方式:protubuf:Protocol Buffers 时间和空间效率是JSON的3-5倍​ IDL语言
  • 代理的创建 ----> 让调用者像调用本地方法那样,去调用远端的服务方法 称为 stub

gRPC优点

  • 高效的进行进程间通信 序列化和协议
  • 支持多语言 原生支持 C Go Java (一等公民)实现,C语言版本上扩展
  • C++,C#,NodeJS,Python等(二等公民)
  • 支持多平台运行 GRPC采用protobuf
  • 使用HTTP2协议(只有GRPC使用)

在JAVA中使用gRPC

项目结构

1. xxx-api 模块 用于定义protobuf idl语言,并且通过命令创建具体的代码,后续client server引入使用
	1. message	
	2. service
2. xxx-server 模块
	1. 实现api模块中定义的服务接口
	2. 发布gRPC服务 (创建服务端程序)
3. xxx-client模块
	1. 创建服务端stub(代理)
	2. 基于代理(stub)进行RPC调用

一、引入依赖

<dependencies>
  <dependency>
    <groupId>io.grpc</groupId>
    <artifactId>grpc-netty-shaded</artifactId>
    <version>1.21.0</version>
  </dependency>
  <dependency>
    <groupId>io.grpc</groupId>
    <artifactId>grpc-protobuf</artifactId>
    <version>1.21.0</version>
  
<think>好的,用户让我介绍一下gRPC,我需要先回顾之前的对话。之前用户问过实时同步,而我在回答中提到了gRPC作为长连接协议的例子。现在用户可能对gRPC感兴趣,想深入了解。 首先,用户可能是在技术选型或学习分布式系统,需要比较不同的通信协议。他们可能已经知道HTTP/1.1和WebSocket,但想了解gRPC的优势。用户可能是开发者,或者正在构建需要高效通信的系统,比如微服务架构。 接下来,我需要确定用户的深层需求。他们可能关心gRPC的特点、工作原理、使用场景,以及和其他协议的区别。比如,为什么选择gRPC而不是REST,或者gRPC在实时同步中的应用。此外,用户可能想知道如何开始使用gRPC,是否需要示例代码或工具链的信息。 然后,我要组织回答结构。先定义gRPC,说明它由Google开发,基于HTTP/2和Protocol Buffers。然后分核心特性、工作原理、应用场景、优缺点,最后给出对比和总结。这样层次清晰,用户能逐步理解。 需要注意用户之前提到的实时同步,所以应该强调gRPC在低延迟和高吞吐量场景的优势,比如长连接和流式通信。同时,用户可能对性能优化感兴趣,比如二进制编码和头部压缩,这些需要详细说明。 还要考虑用户可能的疑问,比如跨语言支持、服务治理工具、与REST的对比。需要提到gRPC的跨平台能力和代码生成工具,以及生态中的工具如Envoy代理。对比部分要简明,帮助用户做技术选型。 最后,确保使用中文,避免专业术语过多,必要时用例子说明,比如在线游戏或金融交易中的实际应用。检查是否有遗漏的重要点,如认证和流式处理类型,确保覆盖全面。</think>以下是关于 **gRPC** 的详细介绍: --- ### 一、基本定义 **gRPC**(Google Remote Procedure Call)是一个**高性能、跨语言的开源RPC框架**,由Google开发并基于现代云原生需求设计。其核心目标是简化**分布式系统间的通信**,通过严格定义的接口和高效的序列化机制,支持不同服务(如微服务)之间的无缝交互。 --- ### 二、核心特性 1. **基于HTTP/2协议** - 支持**多路复用**(单一连接上并行处理多个请求,避免HTTP/1.1的队头阻塞)。 - **头部压缩**(HPACK算法减少冗余数据传输)。 - **双向流式通信**(客户端和服务器可同时发送数据流)。 2. **使用Protocol Buffers(Protobuf)** - **接口定义语言(IDL)**:通过`.proto`文件定义服务接口和数据结构,例如: ```protobuf message UserRequest { int32 user_id = 1; } service UserService { rpc GetUser (UserRequest) returns (User); } ``` - **二进制序列化**:相比JSON/XML体积更小、解析更快(性能提升`$5\times$`以上)。 3. **跨语言支持** - 支持C++、Java、Python、Go、Ruby等主流语言,自动生成客户端和服务端代码。 4. **丰富的通信模式** - **Unary RPC**:类似传统请求-响应模式。 - **Server Streaming**:服务端返回数据流(如实时日志推送)。 - **Client Streaming**:客户端发送数据流(如文件上传)。 - **Bidirectional Streaming**:双向实时交互(如聊天应用)。 --- ### 三、工作原理 1. **定义服务接口** 开发者编写`.proto`文件,明确方法、参数和返回值类型。 2. **生成代码** 使用`protoc`编译器生成目标语言的桩代码(Stub),包含序列化/反序列化逻辑。 3. **实现服务逻辑** 在服务端填充具体业务代码(如数据库查询)。 4. **通信过程** - 客户端通过桩代码调用远程方法,参数被序列化为二进制。 - 基于HTTP/2传输到服务端,反序列化后执行逻辑。 - 结果返回客户端并反序列化。 --- ### 四、典型应用场景 1. **微服务架构** - 服务间高效通信(如Kubernetes内部组件交互)。 - 配合服务发现(如Consul)实现动态负载均衡。 2. **移动端与后端通信** - 减少网络流量(二进制协议节省移动设备带宽)。 3. **实时系统** - 物联网设备控制(双向流式传输指令与传感器数据)。 - 游戏服务器同步玩家状态。 4. **云原生基础设施** - 如etcd的分布式锁服务、Envoy代理的xDS API。 --- ### 五、优缺点分析 | **优势** | **挑战** | |-----------------------------------|-----------------------------------| | 低延迟(HTTP/2 + 二进制编码) | 浏览器支持有限(需gRPC-Web转译) | | 强类型接口减少错误 | 调试复杂性(二进制数据需工具解析)| | 流式通信支持 | 防火墙可能限制HTTP/2流量 | | 天然适合多语言混合系统 | 学习曲线(需掌握Protobuf语法) | --- ### 六、与REST对比 | **特性** | **gRPC** | **REST(HTTP/JSON)** | |-------------------|-------------------------------|-------------------------------| | 协议 | HTTP/2 | HTTP/1.1 或 HTTP/2 | | 数据格式 | Protobuf(二进制) | JSON/XML(文本) | | 通信模式 | 支持四种流式模式 | 仅请求-响应 | | 性能 | 高吞吐、低延迟 | 受文本解析和协议限制 | | 适用场景 | 内部服务、高实时性需求 | 对外API、浏览器直接调用 | --- ### 七、生态工具 - **grpc-gateway**:将gRPC服务自动转换为RESTful API。 - **Envoy Proxy**:支持gRPC流量治理(如熔断、重试)。 - **OpenTelemetry**:集成分布式追踪与指标监控。 --- ### 总结 gRPC凭借其高性能和跨语言能力,已成为云原生和微服务架构中的核心通信技术。对于**内部服务间的高频调用**(如数据库访问、分布式计算)和**实时交互场景**(如金融交易、游戏同步),gRPC是比传统REST更优的选择。
评论 48
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿进阶

千言万语都不及一句“谢谢”

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值