题意
两个长度为n和m的字符串,将这两个字符串拼接成一个字符串。L为字符串所有字母,末位字母与首字母之差的和。求L的最小值。
题解
设d[i][j]为第一个字符串移走i个元素,第二个字符串移走j个元素后还需要的费用。res[i][j]为第一个字符串移走i个元素,第二个字符串移走j个元素时尚未结束的字母个数。可得状态转移方程dp[i][j]=min(dp[i+1][j],dp[i][j+1])+res[i][j]。
注意事项
需要特别注意,last需要初始化为-1,而不是初始化为0。last初始化为0会影响字母开始与结束的判断,导致结果错误。
代码
#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define INF 1e9
using namespace std;
char ch1[5010],ch2[5010];
int res[5010][5010],dp[5010][5010];
int len1,len2;
void init(){
int start[30][2],last[30][2];
len1=strlen(ch1);
len2=strlen(ch2);
memset(last,-1,sizeof(last));
for(int i=0;i<30;i++){
for(int j=0;j<2;j++){
start[i][j]=INF;
}
}
for(int i=0;i<len1;i++){
int ch=ch1[i]-'A';
if(start[ch][0]==INF){
start[ch][0]=i;
}
last[ch][0]=i;
}
for(int i=0;i<len2;i++){
int ch=ch2[i]-'A';
if(start[ch][1]==INF){
start[ch][1]=i;
}
last[ch][1]=i;
}
for(int i=0;i<=len1;i++){
for(int j=0;j<=len2;j++){
int cnt=0;
for(int k=0;k<30;k++){
if(start[k][0]==INF&&start[k][1]==INF)
continue;
if(start[k][0]>i-1&&start[k][1]>j-1)
continue;
if(last[k][0]<=i-1&&last[k][1]<=j-1)
continue;
cnt++;
}
res[i][j]=cnt;
}
}
}
int main()
{
int kase;
scanf("%d",&kase);
for(int ks=1;ks<=kase;ks++){
scanf("%s%s",ch1,ch2);
init();
dp[len1][len2]=0;
for(int i=len2-1;i>=0;i--){
dp[len1][i]=dp[len1][i+1]+res[len1][i];
}
for(int i=len1-1;i>=0;i--){
for(int j=len2;j>=0;j--){
if(j==len2)
dp[i][j]=dp[i+1][j]+res[i][j];
else
dp[i][j]=min(dp[i+1][j],dp[i][j+1])+res[i][j];
}
}
printf("%d\n",dp[0][0]);
}
return 0;
}