UVA1625 线性DP

题意

两个长度为n和m的字符串,将这两个字符串拼接成一个字符串。L为字符串所有字母,末位字母与首字母之差的和。求L的最小值。

题解

设d[i][j]为第一个字符串移走i个元素,第二个字符串移走j个元素后还需要的费用。res[i][j]为第一个字符串移走i个元素,第二个字符串移走j个元素时尚未结束的字母个数。可得状态转移方程dp[i][j]=min(dp[i+1][j],dp[i][j+1])+res[i][j]。

注意事项

需要特别注意,last需要初始化为-1,而不是初始化为0。last初始化为0会影响字母开始与结束的判断,导致结果错误。

代码

#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define INF 1e9
using namespace std;
char ch1[5010],ch2[5010];
int res[5010][5010],dp[5010][5010];
int len1,len2;


void init(){
    int start[30][2],last[30][2];
    len1=strlen(ch1);
    len2=strlen(ch2);
    memset(last,-1,sizeof(last));
    for(int i=0;i<30;i++){
        for(int j=0;j<2;j++){
            start[i][j]=INF;
        }
    }
    for(int i=0;i<len1;i++){
        int ch=ch1[i]-'A';
        if(start[ch][0]==INF){
            start[ch][0]=i;
        }
        last[ch][0]=i;
    }
    for(int i=0;i<len2;i++){
        int ch=ch2[i]-'A';
        if(start[ch][1]==INF){
            start[ch][1]=i;
        }
        last[ch][1]=i;
    }
    for(int i=0;i<=len1;i++){
        for(int j=0;j<=len2;j++){
            int cnt=0;
            for(int k=0;k<30;k++){
                if(start[k][0]==INF&&start[k][1]==INF)
                    continue;
                if(start[k][0]>i-1&&start[k][1]>j-1)
                    continue;
                if(last[k][0]<=i-1&&last[k][1]<=j-1)
                    continue;
                cnt++;
            }
            res[i][j]=cnt;
        }
    }
}
int main()
{
    int kase;
    scanf("%d",&kase);
    for(int ks=1;ks<=kase;ks++){
        scanf("%s%s",ch1,ch2);
        init();
        dp[len1][len2]=0;
        for(int i=len2-1;i>=0;i--){
            dp[len1][i]=dp[len1][i+1]+res[len1][i];
        }
        for(int i=len1-1;i>=0;i--){
            for(int j=len2;j>=0;j--){
                if(j==len2)
                    dp[i][j]=dp[i+1][j]+res[i][j];
                else
                    dp[i][j]=min(dp[i+1][j],dp[i][j+1])+res[i][j];
            }
        }
        printf("%d\n",dp[0][0]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值