HDU 3652 数位DP

题意

问1到N,数字包含“13”且能被13整除的数字有多少个

题解

这道题和POJ 3252差不多,都是一个套路。首先把整数分位,然后按位进行DFS状态转移。这道题唯一比较重要的地方就是有个数学公式一定要想到,a%mod可以拆分为(如果a由bc组成)((b%mod)*c+d)%mod。有了这个公式,MOD的结果状态就可以带到下一位进行处理。

代码

#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<string>
#include<set>
#include<map>
#include<bitset>
#define UP(i,l,h) for(int i=l;i<h;i++)
#define DOWN(i,h,l) for(int i=h-1;i>=l;i--)
#define W(a) while(a)
#define MEM(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define LL long long
#define MAXN 100010
#define EPS 1e-10
#define MOD 13

using namespace std;
int dig[35];
int dp[35][5][20];

int dfs(int len,int type,int mod,bool up){
    if(len==0){
        if(type==2&&mod==0)
            return 1;
        else
            return 0;
    }
    if(!up&&dp[len][type][mod]!=-1)
        return dp[len][type][mod];
    int n=up?dig[len]:9;
    int ans=0;
    UP(i,0,n+1){
        if(type==2||type==1&&i==3){
            ans+=dfs(len-1,2,(mod*10+i)%MOD,up&&(i==n));
        }else{
            ans+=dfs(len-1,i==1?1:0,(mod*10+i)%MOD,up&&(i==n));
        }
    }
    if(!up){
        dp[len][type][mod]=ans;
    }
    return ans;
}

int solve(int n){
    MEM(dp,-1);
    int len=0;
    W(n>0){
        dig[++len]=n%10;
        n/=10;
    }
    return dfs(len,0,0,true);
}

int main(){
    int n;
    W(~scanf("%d",&n)){
        printf("%d\n",solve(n));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值