题意
问1到N,数字包含“13”且能被13整除的数字有多少个
题解
这道题和POJ 3252差不多,都是一个套路。首先把整数分位,然后按位进行DFS状态转移。这道题唯一比较重要的地方就是有个数学公式一定要想到,a%mod可以拆分为(如果a由bc组成)((b%mod)*c+d)%mod。有了这个公式,MOD的结果状态就可以带到下一位进行处理。
代码
#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<string>
#include<set>
#include<map>
#include<bitset>
#define UP(i,l,h) for(int i=l;i<h;i++)
#define DOWN(i,h,l) for(int i=h-1;i>=l;i--)
#define W(a) while(a)
#define MEM(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define LL long long
#define MAXN 100010
#define EPS 1e-10
#define MOD 13
using namespace std;
int dig[35];
int dp[35][5][20];
int dfs(int len,int type,int mod,bool up){
if(len==0){
if(type==2&&mod==0)
return 1;
else
return 0;
}
if(!up&&dp[len][type][mod]!=-1)
return dp[len][type][mod];
int n=up?dig[len]:9;
int ans=0;
UP(i,0,n+1){
if(type==2||type==1&&i==3){
ans+=dfs(len-1,2,(mod*10+i)%MOD,up&&(i==n));
}else{
ans+=dfs(len-1,i==1?1:0,(mod*10+i)%MOD,up&&(i==n));
}
}
if(!up){
dp[len][type][mod]=ans;
}
return ans;
}
int solve(int n){
MEM(dp,-1);
int len=0;
W(n>0){
dig[++len]=n%10;
n/=10;
}
return dfs(len,0,0,true);
}
int main(){
int n;
W(~scanf("%d",&n)){
printf("%d\n",solve(n));
}
}