题意
不断从一个序列中删除下降子序列,直到不出现下降子序列。
题解
纯链表很容易TLE,需要用队列进行优化。处理的思想是这样子的,如果我们删除了某个下降子序列,那么就有可能存在下降子序列的前一个元素与后面的一些元素组合成一个下降子序列。因此我们需要将前一个元素加入队列,再加入队列前需要将链表进行删除操作。同时由于删除了一些元素,对应的队列中也应该将这些元素POP掉。为了防止将刚加入的元素POP掉,我们需要两个队列,一个保存新加入的元素,最后将这个新加入元素的队列的内容复制到处理队列中就可以了。
代码
#include<bits/stdc++.h>
#define ll long long
#define UP(i,l,h) for(int i=l;i<h;i++)
#define W(t) while(t)
#define MEM(a,b) memset(a,b,sizeof(a))
#define MAXN 100010
#define BUF 25001000
#define INF 0x3f3f3f3f
using namespace std;
char Buf[BUF],*buf=Buf;
int val[MAXN],xnext[MAXN],before[MAXN];
int cnt;
void add(int w) {
before[++cnt]=cnt-1;
xnext[cnt]=cnt+1;
val[cnt]=w;
}
queue<int> q,tmpq;
int main() {
int t;
scanf("%d",&t);
W(t--) {
W(!q.empty()) q.pop();
cnt=-1;
int n;
scanf("%d",&n);
add(0);
UP(i,0,n) {
int a;
scanf("%d",&a);
add(a);
q.push(i);
}
add(INF);
W(true) {
W(!tmpq.empty()) tmpq.pop();
W(!q.empty()) {
int x=q.front();
q.pop();
int last=val[x];
int y=xnext[x];
bool can=false;
W(y!=cnt&&val[y]<last) {
last=val[y];
y=xnext[y];
can=true;
}
if(can) {
before[y]=before[x];
xnext[before[x]]=y;
tmpq.push(before[x]);
W(!q.empty()&&q.front()<y) {
q.pop();
}
}
}
if(tmpq.size()==0) break;
W(!tmpq.empty()) q.push(tmpq.front()),tmpq.pop();
}
int sz=0;
int x=0;
W(x!=cnt) {
if(x!=0) sz++;
x=xnext[x];
}
printf("%d\n",sz);
x=0;
W(x!=cnt) {
if(x!=0) printf("%d ",val[x]);
x=xnext[x];
}
puts("");
}
}
/*10
12
10 11 12 98 4 5 9 2 3 1 4 5 45 73 67 43 2 1 4 5
*/