Codeforces 863C 模拟

题意

Alice和Bob玩一个游戏,2比1大,3比2大,1比3大。最开始两个人选择a和b,随后进行k次游戏,每一次每个人选择的数字由一个矩阵决定。如果上一回合A选择了a,B选择了b,那么A这一回合选择A矩阵里的(a,b)元素,B这一回合选择B矩阵里的(a,b)元素。问A,B能赢多少次。

题解

我们可以看出来,A和B选择的a和b一定是循环的,因此我们可以写一段代码去找出这个循环节。然后对于循环节前后的元素特殊处理,对于中间部分的元素直接用循环节数量*Win的次数。

代码

#include<bits/stdc++.h>
#define LL long long
#define UP(i,l,h) for(int i=l;i<h;i++)
#define DOWN(i,h,l) for(int i=h-1;i>=l;i--)
#define W(t) while(t)
#define INF 0x3f3f3f3f
#define MEM(a,b) memset(a,b,sizeof(a))
#define MAXN 200010
#define int LL
using namespace std;
typedef pair<int,int> P;
int ma[4][4],mb[4][4];
map<P,int> mp;
int dp[1010][2];

int check(int a,int b){
    if(a==1&&b==3){
        return 1;
    }else if(a==2&&b==1){
        return 1;
    }else if(a==3&&b==2){
        return 1;
    }else if(a==b){
        return 0;
    }else return 2;
}

main(){
    int k,a,b;
    scanf("%I64d%I64d%I64d",&k,&a,&b);
    UP(i,1,4) UP(j,1,4) scanf("%I64d",&ma[i][j]);
    UP(i,1,4) UP(j,1,4) scanf("%I64d",&mb[i][j]);
    MEM(dp,0);
    int cnt=1;
    W(true){
        dp[cnt][0]=dp[cnt-1][0];
        dp[cnt][1]=dp[cnt-1][1];
//        cout<<"ck"<<a<<" "<<b<<" "<<check(a,b)<<endl;
        if(check(a,b)==1){
            dp[cnt][0]++;
        }else if(check(a,b)==2){
            dp[cnt][1]++;
        }
        if(mp[P(a,b)]==0){
            mp[P(a,b)]=cnt++;
        }else break;
        int tmpa=a,tmpb=b;
        a=ma[tmpa][tmpb],b=mb[tmpa][tmpb];
    }
    int len=cnt-mp[P(a,b)];
//    cout<<cnt<<" "<<mp[P(a,b)]<<endl;
    if(k<cnt){
        printf("%I64d %I64d\n",dp[k][0],dp[k][1]);
    }else{
        int wina=dp[cnt-1][0]-dp[mp[P(a,b)]-1][0];
        int winb=dp[cnt-1][1]-dp[mp[P(a,b)]-1][1];
        int sa=dp[mp[P(a,b)]-1][0],sb=dp[mp[P(a,b)]-1][1];
//        cout<<sa<<" "<<sb<<" "<<mp[P(a,b)]-1<<" "<<k<<endl;
        k-=(mp[P(a,b)]-1);
        int num=k/len;
        k-=num*len;
        sa+=wina*num;
        sb+=winb*num;
//        cout<<sa<<" "<<sb<<" "<<k<<endl;
        int now=mp[P(a,b)];
        W(k){
//            cout<<now<<" "<<dp[now][0]-dp[now-1][0]<<" now "<<dp[now][1]-dp[now-1][1]<<endl;
            sa+=dp[now][0]-dp[now-1][0];
            sb+=dp[now][1]-dp[now-1][1];
            k--;
            now++;
        }
        printf("%I64d %I64d\n",sa,sb);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值