UVALive 3263 二维几何基础

题意

给一笔画的N个点,问一笔画能分出多少块图形

题解

用欧拉定理,顶点数+面数-边数=2。顶点数把所有直线暴力两两相交,然后去重即可。枚举所有点,如果一个点在一条直线上,并且这个点不是端点,那么就一定是交点,这个交点把直线分成了两部分。因此可以暴力枚举点,对于每条直线,每枚举到一个交点,边数++。

注意事项

需要特别注意的是,题目的数据好像有些问题。网上大部分代码都是参考刘汝佳的蓝书,所以大部分人都没有提到线段覆盖的问题。但是实际测试发现,尽管题目明确指出了不存在线段覆盖的情况,如果特判线段覆盖(没有使用刘汝佳模板)就能AC,否则就会WA。

代码

#include<bits/stdc++.h>
#define UP(i,l,h) for(int i=l;i<h;i++)
#define DOWN(i,h,l) for(int i=h-1;i>=l;i--)
#define W(t) while(t)
#define MEM(a,b) memset(a,b,sizeof(a))
#define LL long long
#define INF 0x3f3f3f3f
#define EPS 1e-10
#define MAXN 1010
#define MOD 1000000007
#define COUT(x) cout<<x<<endl
using namespace std;
double sqr(double x) {
    return x*x;
}
int sgn(double x) {
    return x<-EPS?-1:x>EPS;
}
struct Point {
    double x,y;
    Point(double x=0,double y=0):x(x),y(y) {}
    friend Point operator + (const Point &a,const Point &b) {
        return Point(a.x+b.x,a.y+b.y);
    }
    friend Point operator - (const Point &a,const Point &b) {
        return Point(a.x-b.x,a.y-b.y);
    }
    friend Point operator * (const Point &a,const double &b) {
        return Point(a.x*b,a.y*b);
    }
    friend Point operator / (const Point &a,const double &b) {
        return Point(a.x/b,a.y/b);
    }
    friend Point operator * (const double &a,const Point &b) {
        return Point(b.x*a,b.y*a);
    }
    double norm() {
        return sqrt(sqr(x)+sqr(y));
    }
    friend double det(const Point &a,const Point &b) {
        return a.x*b.y-a.y*b.x;
    }
    friend double dot(const Point &a,const Point &b) {
        return a.x*b.x+a.y*b.y;
    }
    bool operator < (const Point b) {
        return sgn(x-b.x)<0||(sgn(x-b.x)==0&&sgn(y-b.y)<0);
    }
    bool operator == (const Point b) {
        return sgn(x-b.x)==0&&sgn(y-b.y)==0;
    }
};

struct Line {
    Point s,t;
    Line(Point s=Point(),Point t=Point()):s(s),t(t) {}
    Point vec() {
        return t-s;
    }
    double norm() {
        return vec().norm();
    }
    bool pointOnLine(const Point &p) {
        return sgn(det(p-s,t-s))==0;
    }
    bool pointOnLineEx(const Point &p) {
        return pointOnLine(p)&&sgn(dot(p-s,p-t))<0;
    }
    bool pointOnSeg(Point p) {
        return pointOnLine(p)&&sgn(dot(p-s,p-t))<=0;
    }
    friend Point linexline(Line l1,Line l2) {
        double s1=det(l1.s-l2.s,l2.vec());
        double s2=det(l1.t-l2.s,l2.vec());
//        COUT(s1-s2);
        return (l1.t*s1-l1.s*s2)/(s1-s2);
    }
};
bool parallel(Line l1,Line l2) {
    return !sgn(det(l1.vec(),l2.vec()));
}
bool sameside(Line l,Point a,Point b) {
    return sgn(det(b-l.s,l.vec()))*sgn(det(a-l.s,l.vec()))>0;
}
bool isSegXSeg(Line l1,Line l2) {
    if(parallel(l1,l2)) return false;
    if(!sameside(l1,l2.s,l2.t)&&!sameside(l2,l1.s,l1.t)){
//        COUT("new");
        return true;
    }else return false;
}
Point points[510];
Point vc[25010];
int main() {
//    freopen("d:/in.txt","r",stdin);
//    freopen("d:/out1.txt","w",stdout);
    int n;
    int ks=1;
    W(~scanf("%d",&n)) {
        if(n==0) break;
        MEM(points,0);
        MEM(vc,0);
        int lnum=0;
        UP(i,0,n) {
            scanf("%lf%lf",&points[i].x,&points[i].y);
//            COUT(points[i].x<<" "<<points[i].y);
        }
        n--;
        UP(i,0,n) vc[i]=points[i];
        int cnum=n;
        UP(i,0,n) {
            UP(j,i+1,n) {
                Line l1=Line(points[i],points[i+1]);
                Line l2=Line(points[j],points[j+1]);
                if(isSegXSeg(l1,l2)) {
//                        COUT("good");
                    vc[cnum++]=linexline(l1,l2);
                }
            }
        }
        sort(vc,vc+cnum);
//        UP(i,0,cnum) COUT(vc[i].x<<" "<<vc[i].y)  ;
        int v=unique(vc,vc+cnum)-vc;
//        COUT(cnum);
//        COUT(e<<" "<<v);
        int e=n;
        UP(i,0,v) {
            UP(j,0,n) {
                Line l=Line(points[j],points[j+1]);
                if(l.pointOnLineEx(vc[i])) {
//                        COUT(i<<" "<<j);
                    e++;
                }
            }
        }
        printf("Case %d: There are %d pieces.\n",ks++,e+2-v);
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数设置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函数被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用中,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε值,控制回归带宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征数量,l是样本数量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数设置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值