01背包问题基础总结

01背包问题无非就是两种写法
1.二维数组形式
dp[i][v]表示前i件物品恰好装入容量为v的背包中所能获得的最大价值
对第i件物品的选择策略,有两种策略
1.不放第i件物品,那么转化为前i-1件物品恰好装入容量为v的背包中所能获得的最大价值,即dp[i-1][v]
2.放第i件物品,那么问题转化为前i-1件物品恰好装入容量为v-w[i]的背包中所能获得的最大价值,即dp[i-1][v-w[i]]+c[i]

关键代码如下:

for(int i=1;i<=n;i++)
    for(int j=w[i];j<V;j++)
       dp[i][v]=max(dp[i-1][v],dp[i-1][j-w[i]]+c[i]);

或者是这种比较传统的写法,上面那种情况有的时候会有点问题

for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= V; j++) {
			if (j < w[i])//装不下的情况
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);//装得下的情况
		}
	}

最终输出dp[n][v]即是最终的结果

当然还可以改写成一位数组的写法
dp[v]就直接表示容量为v的背包最多可以装多少有价值的东西

关键代码如下:

for(int i=1;i<=n;i++)
    for(int v=V;v>=w[i];v--)//这里要注意的一个关键问题是这里一定要逆序从v到w[i]
      dp[v]=max(dp[v].dp[v-w[i]]+c[i])
    

下面我们来看一道具体例题

在这里插入图片描述
话不多说,先直接上代码,先是二维数组形式的

#include<bits/stdc++.h>
using namespace std;
int i,j,n,w[1001],a[1001],dp[1001][1001];
void num(int n)
{
    for(int i=1;i<n;i++)
        for(int j=2;i*j<=n;j++)
        a[i*j]+=i;
}

int main()
{
    cin>>n;
    num(n);
     for(i=1;i<=n;i++)//前几个数
    {
        for(int j=1;j<=n;j++)//和是多少 
        {
            if(j>=i)
            {
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-i]+a[i]);
            }
            else
            {
                dp[i][j]=dp[i-1][j];
            }
        }
    }
    //cout<<dp[2][4]<<endl;
    cout<<dp[n][n];
}

需要注意的是这里的i表示前i个数,而j表示和为j

下面还有一个一维数组形式的

#include<bits/stdc++.h>
using namespace std;
int a[1010],dp[1010];
void Nan(int k)
{
    for(int i=1;i<=k/2;i++)
        for(int j=2;i*j<=k;j++)
        a[i*j]+=i;
}

 int main()
 {
     int n;
     cin>>n;
     Nan(n);
     for(int i=1;i<=n;i++)
        for(int j=n;j>=i;j--)//需要注意的是这里是逆序
          dp[j]=max(dp[j],dp[j-i]+a[i]);

    cout<<dp[n]<<endl;
    return 0;
 }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值