01背包问题无非就是两种写法
1.二维数组形式
dp[i][v]表示前i件物品恰好装入容量为v的背包中所能获得的最大价值
对第i件物品的选择策略,有两种策略
1.不放第i件物品,那么转化为前i-1件物品恰好装入容量为v的背包中所能获得的最大价值,即dp[i-1][v]
2.放第i件物品,那么问题转化为前i-1件物品恰好装入容量为v-w[i]的背包中所能获得的最大价值,即dp[i-1][v-w[i]]+c[i]
关键代码如下:
for(int i=1;i<=n;i++)
for(int j=w[i];j<V;j++)
dp[i][v]=max(dp[i-1][v],dp[i-1][j-w[i]]+c[i]);
或者是这种比较传统的写法,上面那种情况有的时候会有点问题
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= V; j++) {
if (j < w[i])//装不下的情况
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);//装得下的情况
}
}
最终输出dp[n][v]即是最终的结果
当然还可以改写成一位数组的写法
dp[v]就直接表示容量为v的背包最多可以装多少有价值的东西
关键代码如下:
for(int i=1;i<=n;i++)
for(int v=V;v>=w[i];v--)//这里要注意的一个关键问题是这里一定要逆序从v到w[i]
dp[v]=max(dp[v].dp[v-w[i]]+c[i])
下面我们来看一道具体例题
话不多说,先直接上代码,先是二维数组形式的
#include<bits/stdc++.h>
using namespace std;
int i,j,n,w[1001],a[1001],dp[1001][1001];
void num(int n)
{
for(int i=1;i<n;i++)
for(int j=2;i*j<=n;j++)
a[i*j]+=i;
}
int main()
{
cin>>n;
num(n);
for(i=1;i<=n;i++)//前几个数
{
for(int j=1;j<=n;j++)//和是多少
{
if(j>=i)
{
dp[i][j]=max(dp[i-1][j],dp[i-1][j-i]+a[i]);
}
else
{
dp[i][j]=dp[i-1][j];
}
}
}
//cout<<dp[2][4]<<endl;
cout<<dp[n][n];
}
需要注意的是这里的i表示前i个数,而j表示和为j
下面还有一个一维数组形式的
#include<bits/stdc++.h>
using namespace std;
int a[1010],dp[1010];
void Nan(int k)
{
for(int i=1;i<=k/2;i++)
for(int j=2;i*j<=k;j++)
a[i*j]+=i;
}
int main()
{
int n;
cin>>n;
Nan(n);
for(int i=1;i<=n;i++)
for(int j=n;j>=i;j--)//需要注意的是这里是逆序
dp[j]=max(dp[j],dp[j-i]+a[i]);
cout<<dp[n]<<endl;
return 0;
}