mysql纵表转换为横表进行多表之间的关联查询

1、数据库的表可以分为两类:纵表与横表

纵表:表中字段与字段的值采用key——value形式,即表中定义两个字段,其中一个字段里存放的是字段名称,另一个字段中存放的是这个字段名称代表的字段的值。

例如,下面这张project_audit_log表,其中date_type字段表示为什么时间类型,后面的date_value表示这个时间的值

横表:所有的字段都在表结构中定义出来。如果把上面表的date_type与date_value字段转换为shelve_date,offShelve_date,

advance_finish_date这三个字段,那这就是一张横表。

优缺点:横表的表结构更加的清晰明了,关联查询的一些sql语句也更容易,方便易于后续开发人员的接手,但是如果字段不够,需要新增字段,会改动表结构。

 纵表扩展性更高,如果要增加一个字段,不需要改变表结构,但是一些关联查询会更加麻烦,也不便于维护与后续人员接手。

平常开发,尽量能用横表就不要用纵表,维护成本比较高昂,而且一些关联查询也很麻烦。

2、纵表如何转换为横表

(1)第一步,我们先把这些字段名以及相应字段的值从纵表中取出来

select b.project_id,b.version,
(case b.date_type when 'shelveDate' then b.date_value else '' end )shelveDate,
(case b.date_type when 'offShelveDate' then b.date_value else '' end)offShelveDate,
(case b.date_type when 'advanceFinishDate' then b.date_value else '' end) advanceFinishDate
from project_audit_log b;

结果:

采用case语句,成功把字段从纵表中取出,但是此时仍算不上一个横表,我们需要把相同project_id和version的行合并(这两个字段合起来是确保表中数据唯一性的)。

注意:这里需要取出每一个字段,都要case一下,有多少个字段,就需要多少次case语句。因为一个case语句,遇到符合条件的when语句之后,后面的会不再执行。

(2)分组,合并相同行,生成横表

select b.project_id,b.version,
max(case b.date_type when 'shelveDate' then b.date_value else '' end )shelveDate,
max(case b.date_type when 'offShelveDate' then b.date_value else '' end)offShelveDate,
max(case b.date_type when 'advanceFinishDate' then b.date_value else '' end) advanceFinishDate
from project_audit_log b group by b.project_id,b.version;

注意:这里采用group by 分组的时候,需要给字段加上max函数。用group by 分组的时候,一般搭配聚合函数使用,常见的聚合函数:

  • AVG() 求平均数
  • COUNT() 求列的总数
  • MAX() 求最大值
  • MIN() 求最小值
  • SUM() 求和

这里不使用max聚合函数的话,会从分组里面显示第一次出现的字段值,去掉max函数之后的sql:

select b.project_id,b.version,
(case b.date_type when 'shelveDate' then b.date_value else '' end )shelveDate,
(case b.date_type when 'offShelveDate' then b.date_value else '' end)offShelveDate,
(case b.date_type when 'advanceFinishDate' then b.date_value else '' end) advanceFinishDate
from project_audit_log b group by b.project_id,b.version;

查询的结果:

(3)纵表变成横表之后,就可以很方便的进行关联查询以及关于纵表字段的条件查询,比如,另有一张表project_info ,与project_audit_log关联,并且查出shelveDate时间大于2018-08-03 16:23:59与offShelveDate小于2018-08-06 15:12:22

select a.id,a.version,a.project_name,e.shelveDate,e.offShelveDate,e.advanceFinishDate
from project_info a left join 
(select b.project_id,b.version,
max(case b.date_type when 'shelveDate' then b.date_value else '' end )shelveDate,
max(case b.date_type when 'offShelveDate' then b.date_value else '' end)offShelveDate,
max(case b.date_type when 'advanceFinishDate' then b.date_value else '' end) advanceFinishDate
from project_audit_log b group by b.project_id,b.version) e on a.id = e.project_id and a.version = e.version where e.shelveDate >= '2018-08-03 16:23:59' and e.offShelveDate <= '2018-08-06 15:12:22';

(4)采用GROUP_CONCAT,进行字段合并,合成一个横表

select a.project_id,a.version,GROUP_CONCAT(a.date_type,a.date_value) date from project_audit_log a  GROUP BY a.project_id,a.version;

然后进行与其他表的关联查询,但是这样的做法,对于纵表中的字段条件查询也不方便,如果我们要筛选出shelveDate与offShelveDate或者advanceFinishDate条件,也挺不方便的,比较适合于不对纵表字段进行条件查询,只与其它表关联查询出纵表信息。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值