算法导论习题C.4-4答案

题目:

证明:二项分布b(k;n,p)的最大值近似等于1/\sqrt{2\pi npq},其中q=1-p。


解答:

b(k;n,p) = \binom{n}{k}p^{k}q^{n-k}

             =  \frac{n!}{k!*(n-k)!}p^{k}q^{n-k}           

             =  \frac{n!}{(np)! * (nq)!}p^{np}q^{nq}                                       当k=np时,取得最大值

             ≈\frac{\sqrt{2\pi n}(n/e)^{n})}{\sqrt{2\pi np}(np/e)^{np}\sqrt{2\pi nq}(nq/e)^{nq}}p^{np}q^{nq}        根据斯特林公式3.18

            =1/\sqrt{2\pi npq}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhenye1986

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值