您即将完成本课程的学习,我希望到目前为止您已经清楚的看到,人工智能是基于一系列形式化的数学方法,来获取数据中的关系,并训练模型来复制人类某些方面的行为。在历史的这个阶段,我们认为AI是一种非常强大的工具,可以从数据中提取模式,并能够应用这些模式解决新问题。
然而,在科幻小说中,我们经常看到AI对人类构成危险的故事。通常,这些故事围绕着在AI决定对抗人类时,AI的某种形式的叛乱为中心。这暗示着,AI具有某种情感,或者可以做出它的开发者无法预料到的决定。
我们在这门课程中学习的AI,本质上不过是大规模的矩阵运算。它是非常强大的工具,能够帮我们解决我们面临的问题,和其他任何强大的工具一样-可以用于好的目的,也可以坏的目的。重要的是,它可能被滥用(misused)。
负责人的人工智能的原则
为避免AI的意外或者有目的的滥用,微软提出了重要的负责人的人工智能原则(Principles of Responsible AI)。以下概念是这些原则的基础:
- 公平(Fairness ):这与模型偏差这个重要的问题相关,这可能是因使用带偏差的数据训练导致的。例如,当我们试图预测一个人获得一个软件开发工作的概率时,模型可能更偏爱男性-仅仅因为训练数据可能更偏向男性群体。我们需要小心平衡训练数据,并研究模型以避免偏差,确保模型考虑更多相关特征。
- 可靠性和安全性(Reliability and Safety):由于AI的本质,AI模型可能犯错。神经网络会返回概率,我们在做决策的时候需要考虑到这一点。每个模型都有它自己的准确度和召回率,我们需要理解这些指标,并防止因错误的建议而造成伤害。
- 隐私性和安全性(Privacy and Security):隐私性和安全性在AI领域存在一些特定的含义。 比如,我们使用某些数据训练模型时,这些数据从某种程度上来说,集成进了模型里面。一方面,这增强了安全性和隐私性,另一方面-我们需要记得我们的模型是基于哪些数据训练的。
- 包容性(Inclusiveness ):包容性意味着我们构建AI并不是为了替代人类,而是增强人类的能力,并使我们的工作更具创造力。同时,这也与公平有关,因为当我们处理并未被完全代表的团体时,我们收集的大多数数据都可能是有偏差的,我们需要确保这些团体在我们的AI中被纳入了并进行了正确的处理。
- 透明性(Transparency):这包括需要确保我们始终清楚的了解正在使用的AI。同时,在可能的情况下,我们希望使用可解释(interpretable)的人工智能系统。
- 负责任的(Accountability):当AI模型做一些决策时,我们并不是总是很清楚谁对这些决策负责。我们需要确保我们理解人工智能决策的责任在哪里。在大多数情况下,我们希望将人类纳入做重大决策的环节中,以便实际人来承担负责。
负责任的人工智能工具
微软开发了负责任的人工智能工具箱(Responsible AI Toolbox),其中包含了一系列工具:
- 可解释仪表盘(Interpretability Dashboard (InterpretML))
- 公平性仪表盘(Fairness Dashboard (FairLearn))
- 错误分析仪表盘(Error Analysis Dashboard)
- 负责任的AI(Responsible AI Dashboard)仪表盘,其中包含:
- EconML - 因果分析工具,专注于假设性问题。
- DiCE - 反事实分析工具,允许您查看需要改变哪些特征可影响模型的决策。
更多关于人工智能伦理的信息,请访问机器学习课程中的这一程,其中包含作业。
复习与自学
使用这个学习途径,学习更多的负责任的AI。