二十四、伦理与负责任的AI

您即将完成本课程的学习我希望到目前为止您已经清楚的看到人工智能是基于一系列形式化的数学方法来获取数据中的关系并训练模型来复制人类某些方面的行为在历史的这个阶段我们认为AI是一种非常强大的工具可以从数据中提取模式并能够应用这些模式解决新问题

然而在科幻小说中我们经常看到AI对人类构成危险的故事通常这些故事围绕着在AI决定对抗人类时AI的某种形式的叛乱为中心这暗示着AI具有某种情感或者可以做出它的开发者无法预料到的决定

我们在这门课程中学习的AI本质上不过是大规模的矩阵运算它是非常强大的工具能够帮我们解决我们面临的问题和其他任何强大的工具一样-可以用于好的目的也可以坏的目的重要的是它可能被滥用misused)

负责人的人工智能的原则

为避免AI的意外或者有目的的滥用微软提出了重要的负责人的人工智能原则(Principles of Responsible AI)以下概念是这些原则的基础

  • 公平Fairness )这与模型偏差这个重要的问题相关这可能是因使用带偏差的数据训练导致的例如当我们试图预测一个人获得一个软件开发工作的概率时模型可能更偏爱男性-仅仅因为训练数据可能更偏向男性群体我们需要小心平衡训练数据并研究模型以避免偏差确保模型考虑更多相关特征
  • 可靠性和安全性Reliability and Safety):由于AI的本质AI模型可能犯错神经网络会返回概率我们在做决策的时候需要考虑到这一点每个模型都有它自己的准确度和召回率我们需要理解这些指标并防止因错误的建议而造成伤害 
  • 隐私性和安全性Privacy and Security):隐私性和安全性在AI领域存在一些特定的含义 比如我们使用某些数据训练模型时这些数据从某种程度上来说集成进了模型里面一方面这增强了安全性和隐私性另一方面-我们需要记得我们的模型是基于哪些数据训练的
  • 包容性Inclusiveness ):包容性意味着我们构建AI并不是为了替代人类而是增强人类的能力并使我们的工作更具创造力同时这也与公平有关因为当我们处理并未被完全代表的团体时我们收集的大多数数据都可能是有偏差的我们需要确保这些团体在我们的AI中被纳入了并进行了正确的处理
  • 透明性Transparency):这包括需要确保我们始终清楚的了解正在使用的AI同时在可能的情况下我们希望使用可解释interpretable)的人工智能系统
  • 负责任的Accountability):当AI模型做一些决策时我们并不是总是很清楚谁对这些决策负责我们需要确保我们理解人工智能决策的责任在哪里在大多数情况下我们希望将人类纳入做重大决策的环节中以便实际人来承担负责。

负责任的人工智能工具

微软开发了负责任的人工智能工具箱(Responsible AI Toolbox)其中包含了一系列工具

  • 可解释仪表盘(Interpretability Dashboard (InterpretML))
  • 公平性仪表盘(Fairness Dashboard (FairLearn))
  • 错误分析仪表盘(Error Analysis Dashboard)
  • 负责任的AIResponsible AI Dashboard)仪表盘其中包含 
    • EconML - 因果分析工具专注于假设性问题
    • DiCE - 反事实分析工具允许您查看需要改变哪些特征可影响模型的决策

更多关于人工智能伦理的信息请访问机器学习课程中的这一程其中包含作业

复习与自学

使用这个学习途径学习更多的负责任的AI

课后练习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值