三、神经网络简介: 感知器(Perceptron)

原文链接:Introduction to Neural Networks: Perceptron

上一章:二、知识表示(Knowledge Representation)和专家系统

下一章:四、多层感知器、创建您自己的框架

更多章节:人工智能入门课程


目录

课前练习

感知器模型

训练感知器

结尾

挑战

课后练习

复习与自学

作业


课前练习

首批尝试实现类似现代化的神经网络之一的康奈尔航空实验室弗兰克·罗森布拉特Frank Rosenblatt1957年完成的它是一个被称作“Mark-1的硬件实现的旨在识别原始几何图形比如说三角形正方形圆形

图片摘自 Wikipedia

输入图片由20*20的光电管阵列表示所以神经网络有400个输入以及1个二进制位的输出一个简单的网络包含一个神经元也被称作为阈值逻辑单元神经网络的权重就像电位器一样在训练期间需要手动调整

 电位器是一种允许用户调节电路电阻的设备

纽约时报当时报道感知器:【海军期望这个萌芽期的计算机可以行走说话观看书写自我复制并意识到它自己的存在

感知器模型

假设我们的模型有N个特征在这种情况下输入向量是一个大小为N的向量感知器是一个二元分类模型用它可以区分两种类型的输入数据我们假设感知器对每一个输入向量X的输出都会是+1或者-1,输出结果取决于类别输出结果将使用如下公式计算得到

y(x)=f(w^{T}x)

其中f是阶跃激活函数

训练感知器

通过训练感知器我们需要找到一个权重向量w使得最多的分类是正确的也即结果最少错误错误由感知器准则按如下方式定义

E(w)=-\sum w^{T}x_{i}t_{i}

其中:

  • 对那些分类结果是错误的训练数据点i上进行求和
  • x_{i}是数据点i上的输入数据同时t_{i}取值是-1或者+1,分别对应结果负例和正例

该标准被视为权重w的函数我们需要将其最小化通常使用一种叫做梯度下降的方法我们从初始化权重为w^{(0)}开始然后每一步根据如下公式更新权重

w^{(t+1)}= w^{(t)} - ηE(w)

在这里η被称作学习率E(w)表示E的梯度在计算梯度之后我们会得到

w^{(t+1)}= w^{(t)}+ ∑ηx_{i}t_{i}

Python中算法如下所示

def train(positive_examples, negative_examples, num_iterations = 100, eta = 1):

    weights = [0,0,0] # Initialize weights (almost randomly :)

    for i in range(num_iterations):

        pos = random.choice(positive_examples)

        neg = random.choice(negative_examples)

        z = np.dot(pos, weights) # compute perceptron output

        if z < 0: # positive example classified as negative

            weights = weights + eta*weights.shape

        z  = np.dot(neg, weights)

        if z >= 0: # negative example classified as positive

            weights = weights - eta*weights.shape

    return weights

结尾

在这个课程中你学习了感知器一种二元分类模型),以及如何使用权重向量训练它

挑战

如果你想构建你自己的感知器请尝试Microsoft Learn上的这个实验它使用了Azure ML designer

课后练习

复习与自学

了解我们能够如何使用感知器来解决一个玩具问题以及真实生活中的问题并继续前往感知器笔记本学习

这里还有一篇关于感知器的有趣的文章

作业

在这节课中我们实现了一个感知器用于二元分类任务并将它用于区分两个手写的数字在这个实验里面你被要求完整的解决数字分类问题即确定给定图像最可能对应哪个数字


上一章:二、知识表示(Knowledge Representation)和专家系统

下一章:四、多层感知器、创建您自己的框架

 更多章节:人工智能入门课程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值