Bagging与随机森林

Bootstrap方法是集成学习中的重要组件,通过有放回抽样创建采样集。Bagging利用Bootstrap采样训练多个基学习器,并通过投票或平均策略结合结果。随机森林是Bagging的变体,引入属性随机选择增强多样性,提升泛化性能。
摘要由CSDN通过智能技术生成

Bootstrap

Bootstrap方法在集成学习方法中起到了很重要的作用。用一句话概括Bootstrap就是有放回的抽样。
假设有 m m m个样本组成的数据集 D D D,又放回地抽样 m m m次得到采样集 D ′ D^{'} D.显然 D D D中有些样本会重复出现在 D ′ D^{'} D中,也有些样本不会出现在 D ′ D^{'} D中。
样本在 m m m次采样中始终不被采到的概率是 ( 1 − 1 m ) m (1-\frac{1}{m})^m (1m<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值