LDA(线性判别分析,Linear Discriminant Analysis)

读完周志华教授的《机器学习》中的线性判别分析章节,他从LDA实现的效果角度对其进行了推导:类间间距要尽可能大,类内间距尽可能小的基本思想通过拉格朗日乘子法可以简单解出想要的结果。但是在章节的最后,教授提到:LDA可以从贝叶斯决策理论的角度来阐释,并可证明,当两类数据同先验、满足高斯分布且协方差相等时,LDA可达到最优分类。

今天,我们从贝叶斯理论的角度来阐释一回神奇的LDA.


贝叶斯定理

我们先从条件概率入手:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P ( B ∣ A ) = P ( B ∩ A ) P ( A ) \begin{aligned} P(A|B)&=\frac{P(A\cap B)}{P(B)}\\ P(B|A)&=\frac{P(B\cap A)}{P(A)}\\ \end{aligned} P(AB)P(BA)=P(B)P(AB)=P(A)P(BA)
显然有 P ( A ∩ B ) = P ( B ∩ A ) P(A\cap B)=P(B\cap A) P(AB)=P(BA),则可推导出贝叶斯定理:
P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B)=\frac{P(B|A)\cdot P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)
贝叶斯公式可以解释为:事件B的发生是由事件A导致的概率。


LDA模型

将上述公式应用到我们的分类问题上来,我们可以改写这个公式。
P ( Y = k ∣ X = x ) = P ( X = x ∣ Y = k ) ⋅ P ( Y = k ) P ( X = x ) ( 1 ) P(Y=k|X=x)=\frac{P(X=x|Y=k)\cdot P(Y=k)}{P(X=x)} \qquad(1) P(Y=kX=x)=P(X=x)P(X=xY=k)P(Y=k)(1)
在LDA中我们使用高斯分布,这样,我们来改写(1)式中的三项因子。
首先是 x x x k k k这个类别的类条件概率,建设我们的数据在每个类别上都是一个n维高斯分布。则:
P ( X = x ∣ Y = k ) = P k ( x ) = 1 ( 2 π ) n / 2 ∣ Σ k ∣ 1 / 2 e x p [ − 1 2 ( x − μ k ) T Σ k − 1 ( x − μ k ) ] ( 2 ) P(X=x|Y=k)=P_k(x)=\frac{1}{(2\pi)^{n/2}|\Sigma_k|^{1/2}}exp[-\frac{1}{2}(x-\mu_k)^T\Sigma_k^{-1}(x-\mu_k)] \qquad(2) P(X=xY=k)=Pk(x)=(2π)n/2Σk1/21exp[21(xμk)

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值