自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

周博的博客

愿乘风破万里浪,甘面壁读十年书

  • 博客(33)
  • 资源 (2)
  • 收藏
  • 关注

原创 hadoop配置好后找不到Browse Directory

很弱智的问题,但是困扰了我半天,记录下来帮助跟我一样的新手朋友。hadoop配置好后到浏览器访问http://x.x.x.x:50070/后却没有发现Browse Directory,hdfs浏览。解决办法非常简单:鼠标选择最后一栏如图就出现了。。。。...

2020-01-14 15:56:24 2528

原创 卷积神经网络

最近一直在研究卷积神经网络,有些收获,在此做下总结,以便日后回顾。一、二维卷积层和多维卷积层对比总结:二维卷积原理如下图:多维卷积层比二维稍微复杂一些,需要注意的是不同的输入层采用不同的卷积核按二维卷积层计算然后求和:其中1x1的卷积核与全连层等价。需重点掌握输入经过卷积核后的形状:假设输入形状是,卷积核窗口形状是,那么输出形状将会是...

2019-06-25 11:41:00 154

原创 正向传播、反向传播推导总结

最近在看《动手学深度学习》这本书,收获很大,在此想总结一下,方便日后回顾。也推荐大家去看看这本书。一、正向传播:(这里不考虑偏差项b)输入层到隐藏层中间变量:...

2019-06-25 10:55:05 1949

原创 《机器学习(周志华)》Chapter8 集成学习 课后习题答案

闲时完善-------------------------------------------------------------------------------------------------------------------8.1 假设抛硬币正面朝上的概率为p,反面朝上的概率为1 - p. 令H(n)代表抛n次硬币所得到正面朝上的次数,则最多k次正面朝上的概率为\[p(H(n) \l...

2018-04-23 13:58:10 6432 2

原创 《机器学习(周志华)》Chapter8 集成学习

    想了解更多的同学强烈建议阅读下参考网址。        集成学习大致可分为两类,第一类的代表是Boosting,个体学习器间存在强依赖关系、必须串行生成的序列化方法;第二类的代表是Bagging和“随机森林”,个体学习器间不存在强依赖关系、可同时生成的并行方法。1、bagging:从训练集从进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果:2、bo...

2018-04-20 17:17:55 547

原创 《机器学习(周志华)》Chapter7 贝叶斯分类 课后习题答案

7.1 试使用极大似然法估算西瓜数据集3.0中前3个属性的类条件概率.      即求属性为X={色泽, 根蒂, 敲声},c={是, 否},的类条件概率P(x|c)根据西瓜书P149.极大似然法,同理假设P(x|c)具有确定的形式并且被参数向量θc唯一确定。根据公式可得题目转化为求:$$LL(\mathop \theta \nolimits_C ) = \sum\limits_{x \in \ma...

2018-04-14 10:21:13 13039

原创 CSDN插入数学公式

花了我很久的时间,总算是自己摸索解决了,希望对大家有用首先需要注意的就是:新版CSDN使用富文本编辑器, 而不是markdown编辑器,所以语法跟LaTeX有所不同。1、行中公式使用:(使用$$会发现无法显示公式)(注意:这里公式语法使用的是图片实在不知道如何让他不显示公式而显示字符串就不浪费时间了)这是行中公式\(\sqrt {{a^2} + {b^2}}\)2、独行公式使用:(注意:这里公式语...

2018-04-13 15:52:39 723 3

原创 《机器学习(周志华)》Chapter7 贝叶斯分类

一、贝叶斯决策论    贝叶斯分类器通俗点理解就是在给定样本的情况下使得分类正确的概率越大,则分类器越好。反之分类错误的概率越小分类器越好。举个例子:以西瓜数据3.0为例,对编号为1的数据进行预测,预测是好瓜的概率越大分类器越好,这很容易理解。我们可以将问题转化为最小化分类错误的概率,对于多分类类别我们考虑分类成所有不同类别期望损失(可以简单考虑为类别的平均值),假设有N种可能的假设,即y={c1...

2018-04-12 16:40:54 1269

原创 《机器学习(周志华)》Chapter6 支持向量机 课后习题答案

变成向量的方式即为:查看代码及数据集查看代码及数据集

2018-04-12 10:52:12 2513

原创 《机器学习(周志华)》Chapter6 支持向量机

    支持向量机的推理过程作者都是一带而过,这可苦了我这种基础不好的学生,在查阅大量资料之后算是对支持向量机有一定的理解,分享给大家。一、间隔与支持向量机:要理解这节需要理解一下几点即可:1、点到平面的距离公式:即得出点到平面的距离公式:2、理解下图:首先我们已知假设超平面将样本分为两类(正例一定为+1,反例一定为-1),我们联想到对率回归的Sigmoid函数就能理解y=+1,y=-1,而支持向...

2018-04-09 10:02:58 416

原创 激活函数在神经网络中的作用

参考文章:http://www.sohu.com/a/211320716_206784这里做个简要总结:1、假设神经元的激活函数为线性函数,以二分类问题为例:若使用单层感知机,则:只能产生出一条直线,上面的二分类问题根本无法用直线来分类,我们尝试用多个感知机组合试试:从图中我们可以计算出,无论怎么组合,输出y始终未线性方程,无法解决非线性问题。2、理解激活函数每个神经元加入最简单的阶跃激活函数的时...

2018-04-08 11:28:31 1640

原创 《机器学习(周志华)》Chapter5 神经网络 课后习题答案

若用线性函数作为神经元激活函数则无法处理复杂的非线性问题。激活函数在神经网络中的作用相当于每个神经元都在进行对率回归学习率控制着梯度下降的搜索步长,学习率过大收敛过程容易发生振荡,学习率过小收敛速度过慢https://blog.csdn.net/victoriaw/article/details/78075266https://blog.csdn.net/snoopy_yuan/article/d...

2018-04-08 11:11:29 2763

原创 Linux下Pycharm、Anaconda环境配置

    配置环境花了我一下午的时间,简单记录一下,希望能帮到一些新手。1、下载PyCharm:https://www.jetbrains.com/pycharm/download/#section=linux下载完成后将压缩文件解压,然后打开终端执行:cd downloads/pycharm-2018.1/binbash pycharm.sh启动pycharm后需要注册,选择License ser...

2018-04-03 17:38:37 25651 5

原创 《机器学习(周志华)》Chapter5 神经网络

一、神经元模型:θ为阀值,输入样本x与权重w相乘再求和若大于阀值θ则兴奋即输出为1,否则抑制输出为0,f为激活函数经典的有Sigmoid函数二、感知机与多层网络:感知机由两层神经元组成若θ设置为常数,则可训练出权重w多层前馈神经网络:三、误差逆传播算法称BP算法,采用链式求导法则求出各层权重及阀值的导数。假设神经网络的输出为:则均方误差为:梯度下降:η为学习率首先求隐藏层到输出层权重Whj进行求导...

2018-04-02 11:38:22 336

原创 《机器学习(周志华)》Chapter4 决策树 课后习题答案

由决策树生成过程可知,不含冲突数据对结点标记有两种情况,一、划分后数据集为同一类则结点标记为该类的叶节点,二、划分后数据集中的属性相同则标记为数据集中类别最多的类。这样所有属性相同的样本最终标记必定会一样,即必存在误差为0的决策树。训练误差不一定能代表泛化误差,若以最小训练误差作为决策树划分选择准则会容易导致过拟合,泛化性能差4.3编程实现id34.4编程实现CART...

2018-03-31 17:18:48 1334

转载 4.4编程实现CART

# -*- coding: utf-8 -*'''''@author: PY131'''''import osos.environ["PATH"] += os.pathsep + 'D:/python(ruanjian)/Graphviz/bin/'class Node(object): ''' definition of decision node class...

2018-03-31 16:49:51 384

转载 4.3编程实现id3

# -*- coding: utf-8 -*'''''create on 2017/3/24, the day after our national football team beat south korea@author: PY131''''''''definition of decision node classattr: attribution as parent f...

2018-03-31 16:44:09 486

原创 《机器学习(周志华)》Chapter4 决策树

决策树算法比较容易理解,在这里简单做一下记录。一、决策树:决策树解决分类问题,简单来说就是依次选择样本属性作为结点,将该样本属性值作为叶子来展开,最终划分出的叶子标记为训练样例数最多的类别。二、划分选择:在选择属性的时候到底改选择哪个属性?这就引出了划分选择,选择出决策树的分支结点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高,文中介绍了三种方式:信息增益、增益率、基尼指数。1、信息增益...

2018-03-31 15:24:43 531

转载 3.5 编程实现线性判别

"""Author: VictoriaCreated on: 2017.9.15 11:45"""import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdef LDA(X0, X1): """ Get the optimal params of LDA model given trai...

2018-03-31 11:13:29 496

转载 3.4 10折交叉验证和留一法对率回归的错误率

"""Author: VictoriaCreated on: 2017.9.15 11:00"""import numpy as npimport matplotlib.pyplot as pltdef readData(): """ Read data from txt file. Return: X1, y1, X2, y2, X3, y3...

2018-03-31 11:05:30 4028 1

转载 3.3编程实现对率回归

"""Author: VictoriaCreated on: 2017.9.14 11:00"""import matplotlib.pyplot as pltimport numpy as npimport pandas as pddef sigmoid(x): """ Sigmoid function. Input: x:np.array...

2018-03-31 10:54:28 4253 1

原创 《机器学习(周志华)》Chapter3 线性模型 课后习题答案

偏置项b在数值上代表了自变量取0时,因变量的取值;1.当讨论变量x对结果y的影响,不用考虑b; 2.可以用变量归一化(max-min或z-score)来消除偏置。这里提供大致思路,对一元函数而言,求二阶导,如果二阶导小于零则为凸函数,否则为非凸。若对多元函数求二阶导,需要得到Hessian矩阵,然后根据Hessian的正定性判定函数的凸凹性,比如Hessian矩阵半正定,函数为凸函数;Hessia...

2018-03-30 15:49:45 1176

原创 《机器学习(周志华)》Chapter3 线性模型

本章介绍线性模型,性模型能解决哪些现实中的问题?主要有对连续数据的预测(回归问题)、二分类问题、线性判别分析(LDA)和多分类问题。一、单变量线性回归、多变量线性回归1、线性回归基本形式:目的是训练出一组w和b使得y≈f(x),一般用均方误差度量即:(上式也可以理解为求数据到直线的欧式距离最小)要求出最小值,对3.4式求导后等于零即可求出:2、多变量线性回归:基本形式:同理也是试图训练出w和b使得...

2018-03-30 15:40:53 362

原创 《机器学习(周志华)》Chapter2 模型评估与选择 课后习题答案

根据题意可知正例和反例各位50个样本,题目假定的算法为若训练集中正例较多则为正例,反之为反例。1、先考虑简单的留一法:若取得1个正例为测试集,则剩下训练集为49个正例50个反例,算法预测为反例,则与测试集预测相反。反之同样成立,则留一法的错误率为100%2、10折交叉验证若测试集中正例与反例各为5个,则剩下训练集为45个正例45个反例,因为训练样本数据相同时进行随机猜测,则错误率为50%若测试集中...

2018-03-28 17:59:25 465

原创 《机器学习(周志华)》Chapter2 模型评估与选择

    这一章几乎把整个机器学习的工作流程都介绍了一遍,能让读者了解到如何一步步的搭建一个机器学习项目。下面先把整个流程大致的梳理一遍:一、评估方法:我们在拿到数据之后首先要处理的就是将数据划分为训练集和测试集,西瓜书提供了三种方法,分别是:留出法、交叉验证法和自助法。1、留出法:将数据集划分为两个互斥的集合,将70%划分为训练集,30%划分为测试集。如果我们希望评估的是整个训练集的模型性能,而留...

2018-03-28 16:47:45 361

原创 《机器学习(周志华)》Chapter1 绪论 课后习题答案

表1.1 包含4个样例,3种属性,假设空间中有3 * 4 * 4 + 1 = 49种假设。在不考虑冗余的情况下,最多包含k个合取式来表达假设空间,显然k的最大值是49,每次从中选出k个来组成析合式,共​种可能。但是其中包含了很多沉余的情况(至少存在一个合取式被剩余的析合式完全包含<空集除外>)。如果考虑沉余的情况 在这里忽略空集,一个原因是并不是太明白空集是否应该加入析合式,另外就算需...

2018-03-22 15:22:57 4328

原创 《机器学习(周志华)》Chapter1 绪论

    为了避免自己对知识遗忘过快,所以决定对自己学习机器学习的过程做一下记录,也希望能帮到一些初学者!1、基本术语:(非常重要)数据集:记录每条数据,数据由属性和属性值组成,这样的集合称为数据集合示例、样本、特征向量:每条记录是关于一个事件或对象(这里是一个西瓜)的描述属性、特征:反映时间或对象在某方面的表现或性质的事项属性空间、样本空间、输入空间:属性张成的空间维数:每个样本由d个属性描述(例...

2018-03-21 18:07:29 484

原创 开启人工智能转型之路

当我啃完了Andrew Ng(吴恩达教授)的机器学习以及Deeplearn.ai课程之后,顿时神清气爽觉得自己已经踏上了人工智能这条道上,也不再是菜鸟了最起码已经入门了。于是我决定挑战一下kaggle,胡乱的浏览了一番,发现自己懵逼了,看着题目不知从何下手。于是我看别人的代码学不了解的机器学习框架,坚持了几天异常的疲惫,毫无进展,迷茫感让后难以继续坚持下去! 2018.01.27自

2018-01-27 13:47:52 301

原创 Android进阶之自定义控件三

事件分发拦截机制关于事件分发与拦截机制个人觉得《Android群英传》一书讲的比较通俗易懂,大家也可以去参考这本书,下面就讲解一下个人的拙见。事件分发拦截在我平时的工作中非常长见,我也能通过自己解决一些这方面的bug,但是一直没有理解透彻,直到看了《Android群英传》里的一个例子我才恍然大悟,下面分享给大家:假设你所在的公司,有一个总经理,级别最高;他下面有一个部长,级别次之;最低层,就是干活的

2017-03-08 16:18:59 199

原创 Android进阶之自定义控件二

了解自定义控件的三大流程(measure、layout、draw)在上一篇博客中我们大致介绍了一下View和ViewGroup,接下来我们就学习一下自定义控件的三大流程,为我们打下夯实的基础。(本博客主要参考《Android群英传》和《Android开发艺术探索》,大家也可以去阅读这两本书籍)自定义控件三大流程简介什么是自定义控件的三大流程,相信正在阅读这篇博客的你肯定接触过自定义控件,也见过onM

2017-02-23 16:51:06 293

原创 Android进阶之自定义控件一

Android进阶之自定义控件自定义控件是判断Android工程师是否是高级工程师的一项基础指标,如果你想拿到更高的薪水,那就必须的完全掌握这项技能。如何判断自己是否完全掌握自定义控件?其实很简单,项目中遇到需要自定义控件的模块是否产生过恐慌,如果你能应对自如,那说明你已经完全掌握了,若对你会造成恐慌也不必担心,阅读完这篇博客,我会教大家一个应对自如的方法!Markdown和扩展Mark

2017-02-21 17:07:32 235

翻译 设计模式之单例模式

示例代码:1、饿汉单例模式:package com.example.imageloader;public class CEO {private static final CEO mCeo = new CEO();private CEO(){}public static CEO getCeo(){return mCeo;}}

2016-07-05 11:55:46 150

原创 解决INSTALL_FAILED_VERSION_DOWNGRADE

网上查INSTALL_FAILED_VERSION_DOWNGRADE找到很多的解决办法,但是都是说提高versioncode值。若是两个人开发一款app或者新拿来的机器想把apk run进去就会出现这总问题,解决办法如下:1、打开cmd,进入sdk/platform-tools,执行adb shell命令2、在root下执行cd /system/app,再执行rm xxxx.apk和rm

2016-03-02 15:17:45 16513 1

CustomGalleryLikeiPhone(3D相册)

本来是国外大牛的项目源码,本人做了部分bug改善,实现了非常酷的3D相册

2016-02-24

基于opencv图像拼接

在opencv上实现图像拼接,代码很简单,你们自己也能看懂,下载下去自己在opencv上试验一下

2013-03-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除