游戏中的常用算法

<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">一,递归</span>
<span style="background-color: rgb(255, 255, 255); font-family: Arial, Helvetica, sans-serif; font-size: 12px;">一个简单递归,计算阶乘</span>

注:所有递归一定要有一个出口(一般的有1, 0  !  等等),否则会出错

int fun(int n)
	{
		if (n==1||n==0)
		{
			return 1;
		}
		return n * fun(n - 1);
	
	}


二,A*自动寻路算法

劣势:有一定的局限性,可能不会是最优路线


A* [1]   (A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索算法。之后涌现了很多预处理算法(ALT,CH,HL等等),在线查询效率是A*算法的数千甚至上万倍。
公式表示为: f(n)=g(n)+h(n),
其中 f(n) 是从初始点经由节点n到目标点的估价函数,
g(n) 是在 状态空间中从初始节点到n节点的实际代价,
h(n) 是从n到目标节点最佳路径的估计代价。
保证找到 最短路径(最优解的)条件,关键在于估价函数f(n)的选取:
估价值h(n)<= n到目标 节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。并且如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。
如果 估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。

先把一块区域分成小网格

f  =g+h    寻路总消耗

g=从起点到当前位置(其中一个网格)的消耗

h=从当前点(其中一个网格)到终点的消耗


起点g=0;h计算用曼哈顿算法起点的x,y和终点的x,y求差

open数组 

找到当前点四周八个点( 全部存入open数组 )中 f 值(可走斜线根号2 倍)最小的点 ,如果计算到某一步发现下一步不是最优解,可往回退到上级父集点(直线走或者斜线走)

open数组中没值时,不可再走




1,


2,

跳过几步


最终:




close数组 走过的点记录到close中


using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public enum GridType
{
	Normal,//正常
	Obstacle,//障碍物
	Start,//起点
	End//终点
}

//为了格子排序 需要继承IComparable接口实现排序
public class MapGrid : IComparable//排序接口
{
	public int x;//记录坐标
	public int y;

	public int f;//总消耗
	public int g;//当前点到起点的消耗
	public int h;//当前点到终点的消耗


	public GridType type;//格子类型
	public MapGrid fatherNode;//父节点


	//排序
	public int CompareTo(object obj)	 //排序比较方法 ICloneable的方法
	{
		//升序排序
		MapGrid grid = (MapGrid)obj;
		if (this.f < grid.f)
		{
			return -1;					//升序
		}
		if (this.f > grid.f)
		{
			return 1;					//降序
		}
		return 0;
	}

}




public class AStar : MonoBehaviour
{
	//格子大小
	public int row = 5;
	public int col = 10;
	public int size = 70;				//格子大小

	public MapGrid[,] grids;			//格子数组

	public ArrayList openList;			//开启列表
	public ArrayList closeList;			//结束列表

	//开始,结束点位置
	private int xStart = 2;
	private int yStart = 1;

	private int xEnd = 2;
	private int yEnd = 5;
	private Stack<string> fatherNodeLocation;

	void Init()
	{
		grids = new MapGrid[row, col];	//初始化数组
		for (int i = 0; i < row; i++)
		{
			for (int j = 0; j < col; j++)
			{
				grids[i, j] = new MapGrid();
				grids[i, j].x = i;
				grids[i, j].y = j;		//初始化格子,记录格子坐标
			}
		}
		grids[xStart, yStart].type = GridType.Start;
		grids[xStart, yStart].h = Manhattan(xStart, yStart);	//起点的 h 值

		grids[xEnd, yEnd].type = GridType.End;					//结束点
		fatherNodeLocation = new Stack<string>();

		//生成障碍物
		for (int i = 1; i <= 3; i++)
		{
			grids[i, 3].type = GridType.Obstacle;
		}

		openList = new ArrayList();
		openList.Add(grids[xStart, yStart]);
		closeList = new ArrayList();
	}

	int Manhattan(int x, int y)					//计算算法中的 h
	{
		return (int)(Mathf.Abs(xEnd - x) + Mathf.Abs(yEnd - y)) * 10;
	}


	// Use this for initialization
	void Start()
	{
		Init();
	}

	void DrawGrid()
	{
		for (int i = 0; i < row; i++)
		{
			for (int j = 0; j < col; j++)
			{
				Color color = Color.yellow;
				if (grids[i, j].type == GridType.Start)
				{
					color = Color.green;
				}
				else if (grids[i, j].type == GridType.End)
				{
					color = Color.red;
				}
				else if (grids[i, j].type == GridType.Obstacle)	//障碍颜色
				{
					color = Color.blue;
				}
				else if (closeList.Contains(grids[i, j]))		//关闭列表颜色  如果当前点包含在closList里
				{
					color = Color.yellow;
				}
				else { color = Color.gray; }

				GUI.backgroundColor = color;
				GUI.Button(new Rect(j * size, i * size, size, size), FGH(grids[i, j]));
			}
		}
	}

	//每个格子显示的内容
	string FGH(MapGrid grid)
	{
		string str = "F" + grid.f + "\n";
		str += "G" + grid.g + "\n";
		str += "H" + grid.h + "\n";
		str += "(" + grid.x + "," + grid.y + ")";
		return str;
	}
	void OnGUI()
	{
		DrawGrid();
		for (int i = 0; i < openList.Count; i++)
		{
			//生成一个空行,存放开启数组
			GUI.Button(new Rect(i * size, (row + 1) * size, size, size), FGH((MapGrid)openList[i]));
		}
			//生成一个空行,存放关闭数组
		for (int j = 0; j < closeList.Count; j++)
		{
			GUI.Button(new Rect(j * size, (row + 2) * size, size, size), FGH((MapGrid)closeList[j]));
		}

		if (GUI.Button(new Rect(col * size, size, size, size), "next"))
		{
			NextStep();//点击到下一步
		}
	}

	void NextStep()
	{
		if (openList.Count == 0)				//没有可走的点
		{
			print("Over !");
			return;
		}
		MapGrid grid = (MapGrid)openList[0];	//取出openList数组中的第一个点
		if (grid.type == GridType.End)			//找到终点
		{
			print("Find");
			FindFatherNode(grid);		//找节点//打印路线
			return;
		}

		for (int i = -1; i <= 1; i++)
		{
			for (int j = -1; j <= 1; j++)
			{
				if (!(i == 0 && j == 0))
				{
					int x = grid.x + i;
					int y = grid.y + j;
					//x,y不超过边界,不是障碍物,不在closList里面
					if (x >= 0 && x < row && y >= 0 && y < col && grids[x, y].type != GridType.Obstacle && !closeList.Contains(grids[x, y]))
					{


						//到起点的消耗
						int g = grid.g + (int)(Mathf.Sqrt((Mathf.Abs(i) + Mathf.Abs(j))) * 10);
						if (grids[x, y].g == 0 || grids[x, y].g > g)
						{
							grids[x, y].g = g;
							grids[x, y].fatherNode = grid;		//更新父节点
						}
						//到终点的消耗
						grids[x, y].h = Manhattan(x, y);		
						grids[x, y].f = grids[x, y].g + grids[x, y].h;
						if (!openList.Contains(grids[x,y]))
						{
							openList.Add(grids[x, y]);			//如果没有则加入到openlist
						}
						openList.Sort();						//排序
					}
				}
			}
		}
		//添加到关闭数组
		closeList.Add(grid);
		//从open数组删除
		openList.Remove(grid);
	}


	//回溯法 递归父节点
	void FindFatherNode(MapGrid grid)
	{
		if (grid.fatherNode != null)
		{
			//print(grid.fatherNode.x + "," + grid.fatherNode.y);
			string str = grid.fatherNode.x + "," + grid.fatherNode.y;
			fatherNodeLocation.Push(str);
			FindFatherNode(grid.fatherNode);
		}
		if (fatherNodeLocation.Count!=0)
		{
			print(fatherNodeLocation.Pop());
		}
	}

	
}

转载请注明出处:http://blog.csdn.net/zhhf96

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1.全主元高斯约当消去法2.LU分解法3.追赶法4.五对角线性方程组解法5.线性方程组解的迭代改善6.范德蒙方程组解法7.托伯利兹方程组解法8.奇异值分解9.线性方程组的共轭梯度法10.对称方程组的乔列斯基分解法11.矩阵的QR分解12.松弛迭代法第2章插值1.拉格朗日插值2.有理函数插值3.三次样条插值4.有序表的检索法5.插值多项式6.二元拉格朗日插值7.双三次样条插值第3章数值积分1.梯形求积法2.辛普森求积法3.龙贝格求积法4.反常积分5.高斯求积法6.三重积分第4章特殊函数1.г函数、贝塔函数、阶乘及二项式系数2.不完全г函数、误差函数3.不完全贝塔函数4.零阶、一阶和任意整数阶的第一、二类贝赛函数5.零阶、一阶和任意整数阶的第一、二类变形贝赛函数6.分数阶第一类贝赛尔函数和变形贝赛尔函数7.指数积分和定指数积分8.连带勒让德函数第5章函数逼近1.级数求和2.多项式和有理函数3.切比雪夫逼近4.积分和导数的切比雪夫逼近5.有切比雪夫逼近函数的多项式逼近第6章特征值问题1.对称矩阵的雅可比变换2.变实对称矩阵为三对角对称矩阵3.三对角矩阵的特征值和特征向量4.变一般矩阵为赫申伯格矩阵5.实赫申伯格矩阵的QR算法第7章数据拟合1.直线拟合2.线性最小二乘法3.非线性最小二乘法4.绝对值偏差最小的直线拟合第8章方程求根和非线性方程组的解法1.图解法2.逐步扫描法和二分法3.割线法和试位法4.布伦特方法5.牛顿拉斐森法6.求复系数多项式根的拉盖尔方法7.求实系数多项式根的贝尔斯托方法8.非线性方程组的牛顿拉斐斯方法第9章函数的极值和最优化1.黄金分割搜索法2.不用导数的布伦特法3.用导数的布伦特法4.多元函数的下山单纯形法5.多元函数的包维尔法6.多元函数的共轭梯度法7.多元函数的变尺度法8.线性规划的单纯形法第10章傅里叶变换谱方法1.复数据快速傅里叶变换算法2.实数据快速傅里叶变换算法一3.实数据快速傅里叶变换算法二4.快速正弦变换和余弦变换5.卷积和逆卷积的快速算法6.离散相关和自相关的快速算法7.多维快速傅里叶变换算法第11章数据的统计描述1.分布的矩——均值、平均差、标准差、方差、斜差和峰态2.位数的搜索3.均值与方差的显著性检验4.分布拟合的X平方检验5.分布拟合的K-S检验法第12章解常微分方程组1.定步长四阶龙格库塔法2.自适应变步长的龙格库塔法3.改进的点法4.外推法第13章偏微分方程的解法1.解边值问题的松驰法2.交替方向隐式方法
算法一:A*寻路初探 From GameDev.net 译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。 这 篇文章非常知名,国内应该有不少人翻译过它,我没有查找,觉得翻译本身也是对自身英文水平的锻炼。经过努力,终于完成了文档,也明白的A*算法的原理。毫 无疑问,作者用形象的描述,简洁诙谐的语言由浅入深的讲述了这一神奇的算法,相信每个读过的人都会对此有所认识(如果没有,那就是偶的翻译太差了-- b)。 原文链接:http://www.gamedev.net/reference/articles/article2003.asp 以下是翻译的正文。(由于本人使用ultraedit编辑,所以没有对原文的各种链接加以处理(除了图表),也是为了避免未经许可链接的嫌疑,有兴趣的读者可以参考原文。 会者不难,A*(念作A星)算法对初学者来说的确有些难度。 这篇文章并不试图对这个话题作权威的陈述。取而代之的是,它只是描述算法的原理,使你可以在进一步的阅读理解其他相关的资料。 最后,这篇文章没有程序细节。你尽可以用任意的计算机程序语言实现它。如你所愿,我在文章的末尾包含了一个指向例子程序的链接。 压缩包包括C++和Blitz Basic两个语言的版本,如果你只是想看看它的运行效果,里面还包含了可执行文件。 我们正在提高自己。让我们从头开始。。。 序:搜索区域 假设有人想从A点移动到一墙之隔的B点,如下图,绿色的是起点A,红色是终点B,蓝色方块是间的墙。 [图1] 你 首先注意到,搜索区域被我们划分成了方形网格。像这样,简化搜索区域,是寻路的第一步。这一方法把搜索区域简化成了一个二维数组。数组的每一个元素是网格 的一个方块,方块被标记为可通过的和不可通过的。路径被描述为从A到B我们经过的方块的集合。一旦路径被找到,我们的人就从一个方格的心走向另一个,直 到到达目的地。 这些点被称为“节点”。当你阅读其他的寻路资料时,你将经常会看到人们讨论节点。为什么不把他们描述为方格呢?因为有可 能你的路径被分割成其他不是方格的结构。他们完全可以是矩形,六角形,或者其他任意形状。节点能够被放置在形状的任意位置-可以在心,或者沿着边界,或 其他什么地方。我们使用这种系统,无论如何,因为它是最简单的。 开始搜索 正如我们处理上图网格的方法,一旦搜索区域被转化为容易处理的节点,下一步就是去引导一次找到最短路径的搜索。在A*寻路算法,我们通过从点A开始,检查相邻方格的方式,向外扩展直到找到目标。 我们做如下操作开始搜索: 1,从点A开始,并且把它作为待处理点存入一个“开启列表”。开启列表就像一张购物清单。尽管现在列表里只有一个元素,但以后就会多起来。你的路径可能会通过它包含的方格,也可能不会。基本上,这是一个待检查方格的列表。 2,寻找起点周围所有可到达或者可通过的方格,跳过有墙,水,或其他无法通过地形的方格。也把他们加入开启列表。为所有这些方格保存点A作为“父方格”。当我们想描述路径的时候,父方格的资料是十分重要的。后面会解释它的具体用途。 3,从开启列表删除点A,把它加入到一个“关闭列表”,列表保存所有不需要再次检查的方格。 在这一点,你应该形成如图的结构。在图,暗绿色方格是你起始方格的心。它被用浅蓝色描边,以表示它被加入到关闭列表了。所有的相邻格现在都在开启列表,它们被用浅绿色描边。每个方格都有一个灰色指针反指他们的父方格,也就是开始的方格。 [图2] 接着,我们选择开启列表的临近方格,大致重复前面的过程,如下。但是,哪个方格是我们要选择的呢?是那个F值最低的。 路径评分 选择路径经过哪个方格的关键是下面这个等式: F = G + H 这里: * G = 从起点A,沿着产生的路径,移动到网格上指定方格的移动耗费。 * H = 从网格上那个方格移动到终点B的预估移动耗费。这经常被称为启发式的,可能会让你有点迷惑。这样叫的原因是因为它只是个猜测。我们没办法事先知道路径的长 度,因为路上可能存在各种障碍(墙,水,等等)。虽然本文只提供了一种计算H的方法,但是你可以在网上找到很多其他的方法。 我们的路径是通过反复遍历开启列表并且选择具有最低F值的方格来生成的。文章将对这个过程做更详细的描述。首先,我们更深入的看看如何计算这个方程。 正 如上面所说,G表示沿路径从起点到当前点的移动耗费。在这个例子里,我们令水平或者垂直移动的耗费为10,对角线方向耗费为14。我们取这些值是因为沿对 角线的距离是沿水平或垂直移动耗费的的根号2(别怕),或者约1.414倍。为了简化,我们用10和14近似。比例基本正确,同时我们避免了求根运算和小 数。这不是只因为我们怕麻烦或者不喜欢数学。使用这样的整数对计算机来说也更快捷。你不就就会发现,如果你不使用这些简化方法,寻路会变得很慢。 既然我们在计算沿特定路径通往某个方格的G值,求值的方法就是取它父节点的G值,然后依照它相对父节点是对角线方向或者直角方向(非对角线),分别增加14和10。例子这个方法的需求会变得更多,因为我们从起点方格以外获取了不止一个方格。 H 值可以用不同的方法估算。我们这里使用的方法被称为曼哈顿方法,它计算从当前格到目的格之间水平和垂直的方格的数量总和,忽略对角线方向。然后把结果乘以 10。这被成为曼哈顿方法是因为它看起来像计算城市从一个地方到另外一个地方的街区数,在那里你不能沿对角线方向穿过街区。很重要的一点,我们忽略了一 切障碍物。这是对剩余距离的一个估算,而非实际值,这也是这一方法被称为启发式的原因。想知道更多?你可以在这里找到方程和额外的注解。 F的值是G和H的和。第一步搜索的结果可以在下面的图表看到。F,G和H的评分被写在每个方格里。正如在紧挨起始格右侧的方格所表示的,F被打印在左上角,G在左下角,H则在右下角。 [图3] 现在我们来看看这些方格。写字母的方格里,G = 10。这是因为它只在水平方向偏离起始格一个格距。紧邻起始格的上方,下方和左边的方格的G值都等于10。对角线方向的G值是14。 H 值通过求解到红色目标格的曼哈顿距离得到,其只在水平和垂直方向移动,并且忽略间的墙。用这种方法,起点右侧紧邻的方格离红色方格有3格距离,H值就 是30。这块方格上方的方格有4格距离(记住,只能在水平和垂直方向移动),H值是40。你大致应该知道如何计算其他方格的H值了~。 每个格子的F值,还是简单的由G和H相加得到 继续搜索 为了继续搜索,我们简单的从开启列表选择F值最低的方格。然后,对选的方格做如下处理: 4,把它从开启列表删除,然后添加到关闭列表。 5,检查所有相邻格子。跳过那些已经在关闭列表的或者不可通过的(有墙,水的地形,或者其他无法通过的地形),把他们添加进开启列表,如果他们还不在里面的话。把选的方格作为新的方格的父节点。 6,如果某个相邻格已经在开启列表里了,检查现在的这条路径是否更好。换句话说,检查如果我们用新的路径到达它的话,G值是否会更低一些。如果不是,那就什么都不做。 另一方面,如果新的G值更低,那就把相邻方格的父节点改为目前选的方格(在上面的图表,把箭头的方向改为指向这个方格)。最后,重新计算F和G的值。如果这看起来不够清晰,你可以看下面的图示。 好了,让我们看看它是怎么运作的。我们最初的9格方格,在起点被切换到关闭列表后,还剩8格留在开启列表。这里面,F值最低的那个是起始格右侧紧邻的格子,它的F值是40。因此我们选择这一格作为下一个要处理的方格。在紧随的图,它被用蓝色突出显示。 [图4] 首先,我们把它从开启列表取出,放入关闭列表(这就是他被蓝色突出显示的原因)。然后我们检查相邻的格子。哦,右侧的格子是墙,所以我们略过。左侧的格子是起始格。它在关闭列表里,所以我们也跳过它。 其 他4格已经在开启列表里了,于是我们检查G值来判定,如果通过这一格到达那里,路径是否更好。我们来看选格子下面的方格。它的G值是14。如果我们从当 前格移动到那里,G值就会等于20(到达当前格的G值是10,移动到上面的格子将使得G值增加10)。因为G值20大于14,所以这不是更好的路径。如果 你看图,就能理解。与其通过先水平移动一格,再垂直移动一格,还不如直接沿对角线方向移动一格来得简单。 当我们对已经存在于开启列表的4个临近格重复这一过程的时候,我们发现没有一条路径可以通过使用当前格子得到改善,所以我们不做任何改变。既然我们已经检查过了所有邻近格,那么就可以移动到下一格了。 于 是我们检索开启列表,现在里面只有7格了,我们仍然选择其F值最低的。有趣的是,这次,有两个格子的数值都是54。我们如何选择?这并不麻烦。从速度上 考虑,选择最后添加进列表的格子会更快捷。这种导致了寻路过程,在靠近目标的时候,优先使用新找到的格子的偏好。但这无关紧要。(对相同数值的不同对 待,导致不同版本的A*算法找到等长的不同路径。) 那我们就选择起始格右下方的格子,如图。 [图5]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值