poj3070(矩阵快速幂,矩阵乘法)

求一个巨大的裴波那契数列,


非常不可思议地竟然可以把斐波那契数列优化到O(log n*2^3)的复杂度

同时,用结构体记录矩阵,通过operator对矩阵乘法*,进行重定义

返回结构体,以下是矩阵结构体模版


同时利用快速幂的做法,来对矩阵的乘法来进行复杂度降维!


#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>

using namespace std;

struct mat
{
	int m[2][2];
	int x,y;
}ans,d;
mat operator * (mat a,mat b)
{
	mat c;
	memset(c.m,0,sizeof(c.m));
	c.x=a.x,c.y=b.y;
	for (int i=0;i<c.x;i++)
	for (int j=0;j<c.y;j++)
	for (int k=0;k<c.x;k++)
	c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])% 10000;
	return c;
}///operator 的用法!!!!!!结构体的矩阵乘法定义 
int n;

int matmod(int n)
{
	d.m[0][1]=d.m[1][1]=d.m[1][0]=1;
	d.m[0][0]=0;
	ans.m[0][0]=ans.m[1][1]=1;
	ans.m[0][1]=ans.m[1][0]=0;
	d.x=d.y=ans.x=ans.y=2;
	n--;
	while (n>0)//这里一定要注意!!!!必须大于0时才能进行,当然对于这题来说这里是可以改的!,不过本题的关键还是矩阵快速幂和矩阵乘法以及定义的学习为关键
	{
		if (n&1) ans=ans*d;
		n>>=1;
		d=d*d;
	}
	if (n!=-1) return ans.m[1][1];else return 0;
}
int main()
{
	while (scanf("%d",&n)&&n!=-1) 
	printf("%d\n",matmod(n));
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值