标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0),其解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。
两种公式法都可以解标准型的一元三次方程。用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。
一、卡丹公式法的特殊情况
一元三次方程都可化为x³+px+q=0。它的解是:
其中 。根与系数的关系为
。
判别式为 。当 时,有一个实根和两个复根; 时,有三个实根,当 时,有一个三重零根, 时,三个实根中有两个相等; 时,有三个不等实根。三个根的三角函数表达式(仅当 时)为
其中 。
二、卡丹公式法的一般情况
一般的一元三次方程可写成 的形式。上式除以 ,并设 ,则可化为如下形式:
,其中 , 。
可用特殊情况的公式解出 ,则原方程的三个根为
。
三个根与系数的关系为
三、通用求根公式
当一元三次方程 的系数是复数时,直接使用卡丹公式求解,有时会出现问题。此时,可使用下面的公式:
当 时
当 时
当 时
当 时