一、矩阵的内积:两个矩阵A、B对应分量乘积之和,结果为一个标量,记作<A,B>(与向量的内积/点积/数量积的定义相似)。所以A、B的行数列数都应相同,且有结论<A,B>=tr(A^T* B)。
例如:, ,则<A,B>=1*5+2*6+3*7+4*8=70.
二、矩阵外积:(或向量外积/叉积/向量积),外积是一种特殊的克罗内克积,克罗内克积是两个任意大小的矩阵间的运算,结果是一个矩阵,记作。克罗内克积是张量积的特殊形式。
1.定义:如果A是一个m×n的矩阵,而B是一个p×q的矩阵,克罗内克积则是一个mp×nq的分块矩阵。
更具体地可表示为
2.例子:
三、矩阵的hadamard积:哈达玛积(Hadamard product)是矩阵的一类运算,若A=(aij)和B=(bij)是两个同阶矩阵,若cij=aij×bij,则称矩阵C=(cij)为A和B的哈达玛积,或称基本积。
为矩阵A与B的哈达玛(Hadamard)积,记作。