在Milton Pividori的文章中,他详细探讨了如何有效地使用ChatGPT来促进科学研究,并分享了一些关键的步骤和提示词指令。以下是对这些关键步骤和指令的详细解读:
关键步骤和提示词指令
-
设计你的提示(Prompt Engineering)
- 明确指令:告诉ChatGPT你希望它做什么,例如使用“总结”或“解释”等动词。
- 角色指定:要求ChatGPT扮演一个特定的角色,比如“你是一名专业的文字编辑”。
- 提供示例:给出输入和输出的示例,帮助模型理解你的期望。
- 指定回答方式:告诉模型如何回答,比如“向对表观遗传学有基本了解的人解释”。
- 格式要求:指定输出的格式,如JSON或CSV文件。
-
找到正确的任务
- 评估任务的创造性需求:考虑任务是否需要高度的创造性思维。
- 风险评估:考虑如果模型引导错误,可能带来的后果。
- 任务分配:确定哪些任务适合人类完成,哪些适合ChatGPT完成。
-
多写,少读
- 控制输出:在写作时,你可以控制ChatGPT的输出,并在必要时进行修正。
- 利用结构规则:提供科学稿件的结构规则,帮助ChatGPT更好地理解写作要求。
使用步骤进行详细解读
-
设计你的提示
- 目的:确保ChatGPT理解你的需求并提供有用的输出。
- 操作:在与ChatGPT交互时,清晰地描述你的问题或请求。例如,如果你需要总结一篇科学文章,你可以这样提示:“请以背景-内容-结论的格式总结以下科学文章。”
- 效果:好的提示可以显著提高ChatGPT的响应质量和相关性。
-
找到正确的任务
- 目的:最大化ChatGPT的效用,同时减少错误和风险。
- 操作:选择那些适合ChatGPT的任务,如文献综述的后期总结,而不是需要深入理解和创造性思维的早期研究设计。
- 效果:通过正确分配任务,可以提高研究效率,同时避免可能的错误。
-
多写,少读
- 目的:利用ChatGPT的写作能力,同时保持对输出内容的控制。
- 操作:在写作时,可以先自己起草一个初稿,然后让ChatGPT帮助改进和润色。在阅读方面,谨慎使用ChatGPT的总结,确保关键信息不被遗漏。
- 效果:这种方法可以提高写作质量,同时确保研究的准确性和完整性。
通过这些步骤和指令,研究人员可以更有效地利用ChatGPT来支持他们的工作,同时确保研究的质量和准确性。这些策略不仅提高了生产力,还帮助研究人员更好地理解和利用人工智能在科研中的潜力。
以下是原文:
Chatbots in science: What can ChatGPT do for you?
Milton Pividori spent a year and a half studying how best to use ChatGPT in research. Here, he highlights three key lessons.
Milton Pividori has explored how best to use AI chatbots to improve science.Credit: Kerkhoff Photography & Design
ChatGPT stunned the world on its launch