- 博客(145)
- 收藏
- 关注
原创 单细胞scRank药物反应推断工具学习
scRank是一种利用目标扰动基因调控网络(target-perturbed gene regulatory networks, tpGRN)对未处理scRNA-seq数据中的药物扰动进行建模和评分的药物响应细胞类型推断方法。开发者是基于以下两点进行假设:1.不同细胞类型的内在细胞状态可以通过细胞特异性基因调控网络(GRN)反映出来;2.细胞中的药物(抑制剂)扰动可以建模为GRN中药物靶基因节点的缺失,进而导致全局或局部效应。因此该工具可以探索。
2025-04-21 20:49:15
360
原创 单细胞实战之CytoTRACE2和monocle3——入门到进阶(高级篇2)
cellTRACE2+monocle3+ClusterGVis 轨迹分析小连招。
2025-04-20 00:25:25
1016
原创 Dependency Map(DepMap)数据库学习
在DepMap中,利用大规模功能基因组学分析来识别细胞生长所必需的基因。迄今为止,已在超过1000种癌细胞模型中完成了RNA干扰和CRISPR基因敲除筛选。与此同时,采用多重分析方法对数百种细胞模型进行药物敏感性分析。在完成药物重定位化合物库的筛选后,持续对具有研究价值的新化合物进行表征,以创建迄今规模最大的肿瘤学研究参考数据集。该工作的核心是开发新型分析工具,以更精准地捕捉这些遗传依赖性和药物敏感性。
2025-04-02 23:31:45
1102
原创 单细胞实战之亚细胞分群之CD4+T细胞分群——从入门到进阶(中级篇2)
根据1. 先验知识证据;2. 转录因子结果;3. 差异基因结果 进行细胞亚群注释
2025-03-23 22:54:34
672
原创 单细胞实战之细胞周期矫正,双胞体和RNA污染去除——入门到进阶(初级篇2)
单细胞细胞周期矫正的目的从宽泛的角度来说是因为它可以消除由于细胞周期阶段不同而导致的基因表达异质性。在单细胞数据中,不同细胞可能处于不同的细胞周期阶段(如G1、S、G2或M期),这些阶段会影响细胞的基因表达模式,尤其是那些与细胞周期密切相关的基因。如果不进行细胞周期矫正,这些周期性变化的基因可能会误导后续的数据分析,如聚类和差异表达分析,导致分析结果不能准确反映细胞的生物学状态和异质性。
2025-02-09 23:53:08
928
1
原创 datapasta包学习-可复制网页、Excel表格等其他来源的数据至Rstudio中
将 Excel/CSV/表格数据快速粘贴到 R 代码:可将剪贴板中的数据直接转换为 data.frame、tibble、vector 等格式,无需手动整理格式。从R数据转换为文本格式(适用于论文、报告):支持将 R 变量(如 data.frame、向量等)转换为 Markdown、LaTeX、CSV、TSV 等格式,方便复制到论文、报告或其他文档中。提供 RStudio 加载项(Addins):允许用户在 RStudio 界面内 一键转换数据格式,提高数据输入和导出效率。
2025-01-31 15:42:03
398
原创 SHAP (SHapley Additive exPlanations)及kernelshap预测单样本/全局情况和shapviz可视化学习
SHAP,kernelshap和shapviz学习
2025-01-10 15:00:15
1105
原创 SHAP (SHapley Additive exPlanations)及DALEX预测单样本变量情况和shapviz可视化学习
SHAP (SHapley Additive exPlanations), DALEX,shapviz学习
2025-01-04 23:35:28
1405
原创 医学单细胞及表观多组学技术应用线上公开课(武汉大学/菲沙基因)整理总结及学习(第三部分-细胞互作/stripe/ATAC)
医学单细胞及表观多组学技术应用线上公开课(武汉大学/菲沙基因)整理总结及学习(第三部分)
2024-12-17 21:28:41
346
原创 医学单细胞及表观多组学技术应用线上公开课(武汉大学/菲沙基因)整理总结及学习(第二部分-inferCNV/拟时序/RNA速率)
医学单细胞及表观多组学技术应用线上公开课(武汉大学/菲沙基因)整理总结及学习(第二部分)
2024-12-14 23:55:28
547
原创 医学单细胞及表观多组学技术应用线上公开课(武汉大学/菲沙基因)整理总结及学习(第一部分-Cellchat)
医学单细胞及表观多组学技术应用线上公开课整理总结及学习
2024-12-05 17:49:40
622
原创 CNCB(国家生物信息中心)数据下载流程学习(Anaconda/Aspera/Edge turbo)
CNCB(国家生物信息中心)数据下载流程学习(Anaconda/Aspera/Edge turbo)
2024-11-25 22:29:59
1817
原创 Chip-seq上游分析流程学习(三)
转录组数据对比之后是进行定量,而在chip-seq中后续的步骤是去除pcr重复,peaks calling,以及可视化。本次分析步骤包括:环境部署——数据下载——查看数据(非过滤)——数据质控清洗——数据比对——
2024-11-20 23:26:18
1141
原创 临床预测模型-静态诺模/列线图(Nomogram)+校准曲线(Calibration)分析学习
静态诺模/列线图(Nomogram)+校准曲线(Calibration)分析学习
2024-11-10 13:27:19
2320
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人