Problem M
Problem Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
/*用线段树维护,使用懒操作*/
#include<iostream>
#include<cstring>
#include<cmath>
#include<stdio.h>
#define N 100005
using namespace std;
struct data
{
int be,en;
int left,right;
__int64 bj,sum;
}tree[4*N];
int a[N],tot;
void make_tree(int st,int en)
{
int now=++tot;
tree[now].be=st,tree[now].en=en;
if(st==en) tree[now].sum=a[st];
else
{
int mid=(st+en)/2;
tree[now].left=tot+1;
make_tree(st,mid);
tree[now].right=tot+1;
make_tree(mid+1,en);
tree[now].sum=tree[tree[now].left].sum+tree[tree[now].right].sum;
}
}
void clear(int v) //传递父亲的标记给孩子
{
tree[tree[v].left].bj+=tree[v].bj;
tree[tree[v].right].bj+=tree[v].bj;
tree[v].sum+=((__int64)(tree[v].en-tree[v].be+1))*tree[v].bj;
tree[v].bj=0;
}
void add(int v,int st,int en,__int64 k) //更新区间
{
if(tree[v].be>=st && tree[v].en<=en)
{
tree[v].bj+=k;
return;
}
if(tree[v].bj!=0) clear(v);
if(tree[v].be==tree[v].en) return;
int mid=(tree[v].be+tree[v].en)>>1;
if(st>mid) add(tree[v].right,st,en,k);
else if(en<=mid) add(tree[v].left,st,en,k);
else
{
add(tree[v].right,st,en,k);
add(tree[v].left,st,en,k);
}
if(tree[tree[v].left].bj) clear(tree[v].left);
if(tree[tree[v].right].bj) clear(tree[v].right);
tree[v].sum=tree[tree[v].left].sum+tree[tree[v].right].sum;
}
__int64 qusum(int v,int st,int en) //取和
{
if(st<=tree[v].be && en>=tree[v].en)
{
if(tree[v].bj!=0) clear(v);
return tree[v].sum;
}
if(tree[v].bj!=0) clear(v);
if(tree[v].be==tree[v].en) return 0;
int mid=(tree[v].be+tree[v].en)>>1;
if(en<=mid) return qusum(tree[v].left,st,en);
if(st>mid) return qusum(tree[v].right,st,en);
return qusum(tree[v].left,st,mid)+qusum(tree[v].right,mid+1,en);
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
memset(a,0,sizeof(a));
memset(tree,0,sizeof(tree));
tot=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
make_tree(1,n);
char s[10]; getchar(); //gets(s);
for(int i=1;i<=m;i++)
{
char ch; __int64 c; int k,m;
scanf("%c%d%d",&ch,&k,&m);
if(ch=='Q') printf("%I64d\n",qusum(1,k,m));
else
{
scanf("%I64d",&c);
add(1,k,m,c);
}
getchar();
}
return 0;
}