连续时间马尔科夫过程

本文详细介绍了连续时间马尔科夫链(CTMC)的概念,通过生灭过程来阐述其性质。讨论了从状态i到状态j的平均时间,并探讨了CTMC的两个定义之间的关系。此外,文章还涉及连续时间马尔科夫链的极限概率和时间可逆性,并提供了一个关于系统部件失效与修复的实例,展示了如何应用这些理论解决实际问题。
摘要由CSDN通过智能技术生成

1.
一个随机过程 { X(t),t0} 称为连续时间的马尔科夫链,如果

P(X(t+s)=j|X(s)=i,X(u)=x(u),0u<s)=P(X(t+s)=j|X(s)=i)

那么我们称这个过程为马尔科夫过程。另外针对转移概率
pij(s)=P(X(t+s)=j|X(t)=i)

和起始时间t无关的话,我们称这是时间齐次的马尔科夫链。这个转移矩阵和离散时间不同的是,离散时间给出的是一步转移概率,但是连续马尔科夫链的转移概率给出的是和时间相关的。
2.
我们考虑连续时间马尔科夫链从一个状态 i 开始,到状态发生变化,比如变成j所经过的时间,由于马尔科夫链的马尔科夫性,这个时间是具有无记忆性的,所以这个时间是服从指数分布的。这和离散时间马尔科夫链是密切相关的,离散时间马尔科夫链中的时间是离散时间,因为由无记忆性,所以是服从几何分布的。
这样我们就可以这样定义连续时间马尔科夫链。马尔科夫链是这样的一个过程。
(i) 在转移到不同的状态 i 前,它处于这个状态的时间是速率为 vi 的指数分布。
(ii) 当离开状态 i 时,以某种概率 Pij 进入下一个状态 j ,当然 Pij 满足
Pii=0,i;jPij=1,i

对比于半马尔科夫链,我们可以发现,连续时间马尔科夫链是一种特殊的半马尔科夫链,在一个状态所待的时间是只不过是一个具体的分布–指数分布,而半马尔科夫链只是说所待的时间是任意的一个随机时间。

3.
第二种定义是利于了解连续时间马尔科夫链的相关性质的,我们用生灭过程来说明这种定义的意义所在。首先,我们先说明什么是生灭过程。生灭过程是一个计数过程,在这个过程的任意时刻,新到达者以指数速率 λn 进入系统(生过程),同时系统中的成员以指数速率 μn 离开系统(灭过程),也就是说假设系统中现在有n个人,那么下一状态有两种,一个是n+1,另一个是n-1.从n状态到n+1状态所经过的时间服从速率为 λn 的指数分布。从状态n到状态n-1所经过的时间服从速率为 μn 的指数分布。这样的过程就是生灭过程,参数 { λn}n=0 { μn}n=0 称为出生率和死亡率。我们做出图来理解这个过程。

这里写图片描述

图中的状态就是当前系统中的人数,0,1,2,3表示系统中的人数为0,1,2,3.从1状态到2状态所经过的时间 t1 服从速率为 λ1 (图中的L0)的指数分布。从状态1到状态0所经过的时间 t2 服从速率为 μ1 (图中的U1)的指数分布。那么我们很感兴趣的是系统在状态1所待的时间是什么分布,它应该是 λ1 μ1 中的较小者,显然是服从参数为 λ1+μ1 的指数分布。那么在即将改变状态那一时刻,这个状态应该转变成哪种状态,同时状态转移概率是多少。问题便是如果 t1=min(t1,t2) ,那么也就是说1状态将要转变成2状态,这个概率为 λ1λ1+μ1 ,如果

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值