指数分布与泊松过程(一)

指数分布是概率论中的一个比较常见的分布,本章节主要的目的就是列举指数分布的相关性质,同时举出例子说明这些性质的应用。
首先是指数分布的密度函数

f(x)={ λeλx,0, 0x<0

它的期望和方差分别为
E(x)=1λVar(x)=1λ2

性质1 无记忆性
一个随机变量X成为无记忆的,如果它满足
P(X>s+t|X>s)=P(X>t)

例1.考虑由两个办事员经营的邮局,假设A进入邮局的时候,两个办事员分别在为B和C两个客户进行服务,同时这两个办事员用在两个顾客上的时间服从参数为 λ 的指数分布,那么这三个顾客中,A顾客最后走的概率是多少。

分析:在A进入邮局时,必须等到B或者是C中的一个服务完之后,方可被服务。显然A一定不是第一个走,同时无论是B或者是C中的哪一个顾客先走,剩下的那个顾客等待时间仍然是一个指数分布,这样和A顾客的等待时间服从相同的分布,故剩下的那个顾客和A最终是谁先走,概率是一样的,原因就是指数分布的无记忆性,无论剩下的那个顾客被服务了多久,他再被服务的时间仍然是服从相同的分布


性质2 两个指数分布随机变量大小关系
如果 X1 X2 是两个参数分别为 λ1 λ2 的随机变量,那么

P(X1<X2)=λ1λ1+λ2

证明用全概率公式
P(X1<X2)=0P(X1<X2|X1=x)λ1eλ1dx

例2.还是例1那种情况,但是不同的是,这两个办事员的服务时间服从参数分别是 λ1 λ2 的指数分布,那么A在邮局待的时间T的期望是多少。

分析:A在邮局待的时间T等于B或者C从A进入邮局到他俩其中一个办完事的时间加上A被服务的时间,其实就是

E(T)=E(T|TB<TC)P(TB<TC)+E(T|TC<TB)P(TC<TB)

根据性质2,我们可得
P(TB<TC)=λ1λ1+λ2

P(TC<TB)=λ2λ1+λ2
同时
E(T|T
  • 6
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值