典型相关分析,奇异值分解,RRR(Reduced-Rank Regression)

本文探讨了典型相关分析与奇异值分解之间的关系,以及它们如何在 Reduced-Rank Regression (RRR) 中发挥作用。通过最大化相关系数来寻找最优向量,并利用奇异值分解解决相关问题。此外,还阐述了RRR在多因变量回归中的应用,通过限制矩阵秩来减少误差。最后,解释了如何将RRR与典型相关分析相联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.典型相关分析和奇异值分解之间的关系
典型相关分析研究的是两个随机向量之间的相关性,例如如果有向量 Y={ Y1,...,YK} Y = { Y 1 , . . . , Y K } X={ X1,...,XM} X = { X 1 , . . . , X M } ,目的是需要找到 α={ α1,...αK} α = { α 1 , . . . α K } β={ β1,...,βM} β = { β 1 , . . . , β M } ,使得 αTY α T Y βTX β T X 的相关系数最大,公式表示为

maxα,βcov(αTY,βTX)var(αTY)var(βTX) m a x α , β c o v ( α T Y , β T X ) v a r ( α T Y ) ∗ v a r ( β T X )
或者
maxα,βαTYXβαTYαβTXβ m a x α , β α T ∑ Y X β α T ∑ Y α ∗ β T ∑ X β

首先我们令
aT=αT1/2Y,bT=βT1/2X a T =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值