1.典型相关分析和奇异值分解之间的关系
典型相关分析研究的是两个随机向量之间的相关性,例如如果有向量 Y={
Y1,...,YK} Y = { Y 1 , . . . , Y K } 和 X={
X1,...,XM} X = { X 1 , . . . , X M } ,目的是需要找到 α={
α1,...αK} α = { α 1 , . . . α K } 和 β={
β1,...,βM} β = { β 1 , . . . , β M } ,使得 αTY α T Y 和 βTX β T X 的相关系数最大,公式表示为
maxα,βcov(αTY,βTX)var(αTY)∗var(βTX)−−−−−−−−−−−−−−−−−√ m a x α , β c o v ( α T Y , β T X ) v a r ( α T Y ) ∗ v a r ( β T X )
或者
maxα,βαT∑YXβαT∑Yα∗βT∑Xβ−−−−−−−−−−−−−−−−√ m a x α , β α T ∑ Y X β α T ∑ Y α ∗ β T ∑ X β
首先我们令
aT=αT∑1/2Y,bT=βT∑1/2X a T =