Faster R-CNN阅读重点
Faster R-CNN原论文地址 https://arxiv.org/pdf/1506.01497.pdf
Introduction

Faster R-CNN在Fast R-CNN的基础上提出了RPN网络来生成感兴趣区域,RPN和Fast R-CNN共享前面的卷积,所以RPN几乎是一个cost-free的方法,并且速度上也较之前的selective search要快很多。
Faster R-CNN Detection System

Faster R-CNN的检测流程就是先输入一张图片,然后卷积之后得到特征图,将特征图输入到RPN网络中生成感兴趣区域(锚点框),然后接下来就是Fast R-CNN的步骤了。
RPN

RPN网络在特征图上的每个单元生成k个锚点框(论文中是9个,由3种不同尺度大小和不同长宽比组合成的),然后是一个33的卷积,再接着就是2个11的卷积,左边是为了区分锚点框是前景还是后景,所以它针对每个特征单元的输出是2k个分数,而右边是一个回归器,输出的是x,y,w,
Faster R-CNN详解:目标检测的革新

Faster R-CNN通过引入区域提议网络(RPN)改进了目标检测流程,实现了与Fast R-CNN共享卷积层,提高了效率。RPN在特征图上生成多个锚点框,用于后续的分类和回归。该模型在VOC 2007, 2012及COCO数据集上展现出优越性能。"
117423819,11084530,嵌入式融合器声音异常升级步骤,"['嵌入式开发', '设备升级', '故障排除', '网络配置', '系统维护']
最低0.47元/天 解锁文章
1098

被折叠的 条评论
为什么被折叠?



