从0到1,AI我来了-(前奏2)Python环境搭建

5 篇文章 0 订阅

Python 是学AI最短的学习路径,那我们看下环境如何管理,一劳永逸,我们选择Anaconda。

一、为什么用Anaconda?

官方说:All the Best Tools in One Platform (最好的工具集聚合平台)

The world’s most popular platform to develop and deploy secure Python solutions, faster(最受欢迎的平台,可更快更安全的开发、部署python 解决方案)

二、安装Anaconda

下载地址:Download Anaconda Distribution | Anaconda

上一小节,我们已经安装了brew,执行下面命令,安装Anaconda.

brew install anaconda

安装完后,类似Java 配置环境变量,把可执行命令,添加到全局可执行。

echo 'export PATH="/opt/anaconda3/bin:$PATH"' >> ~/.zshrc
source ~/.zshrc

验证安装结果:(恐龙帅不帅...)

三、添加国内源,提速资源下载

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/                                                      
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

再看下Channel URLs : 

四、上点开胃菜

  启动Anaconda,我们来了解下 Jupyter Notebook、 JupyterLab,然后小试牛刀。

jupyter Notebook和JupyterLab都是基于Web的交互式开发环境,‌用于编写、‌运行和分享代码。‌Jupyter Notebook适合简单的交互式计算和快速原型开发,‌而JupyterLab则更适合复杂的数据分析和开发任务,‌具有更强大的界面和扩展能力

1)JupyterLab

是一个开源的Web应用,‌允许用户创建和共享包含实时代码、‌方程、‌可视化和叙述性文本的文档。‌它支持多种编程语言,‌如Python、‌R、‌Julia等,‌并且可以通过浏览器访问。‌Jupyter Notebook特别适合简单的交互式计算和快速原型开发,‌因为它提供了一个直观的界面,‌使得用户可以轻松地编写和运行代码,‌同时查看结果和输出

       小试牛刀

2)Notebook

是Jupyter Notebook的下一代用户界面,‌提供了一个更加现代化和灵活的开发环境。‌它支持多窗口布局,‌允许用户在同一个页面内同时打开多个Notebook、‌文本文件、‌终端等。‌JupyterLab还支持插件扩展,‌可以根据需要安装和配置各种插件,‌如代码编辑器、‌文件浏览器、‌绘图工具等,‌以满足不同的需求。‌这使得JupyterLab更适合复杂的数据分析和开发任务,‌提供了一个更强大的界面和扩展能力.

差异点:

下篇,我们开始找个案例,手写数字的自动识别输出案例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值